首页> 外文学位 >Simulation of an air cooled single effect solar absorption cooling system with evacuated tube collectors.
【24h】

Simulation of an air cooled single effect solar absorption cooling system with evacuated tube collectors.

机译:带有真空管收集器的风冷单效太阳能吸收式冷却系统的仿真。

获取原文
获取原文并翻译 | 示例

摘要

Consistently increasing CO2 emission and ozone depletion from synthetic refrigerants are serious environmental issues challenging the scientific community. Absorption cooling systems give scope of utilizing low grade energy source for generating cooling effect. Solar energy is one of these low grade energy sources and with considering the fact that cooling demand increases with the intensity of solar radiation, solar refrigeration has been considered as a logical solution.;This thesis consists of two different simulation stages, in the first stage, a single effect lithium bromide absorption cooling system with constant cooling capacity is modeled and the effect of ambient and generator temperatures on concentration and strong solution flow rate is investigated. Then the energy required by the generator and the resulting coefficient of performance (COP) are analyzed by varying all parameters: for instance, strong and weak solution concentration, generator temperature, and ambient temperature. This simulation shows that the generator temperature needs to be increased for higher ambient temperatures and there is one optimum generator temperature that gives the highest COP. The overall COP after using the control system was between 0.75 and 0.85.;In next stage of the analysis, the sun position and hot water production for cooling season (May through September) in Las Vegas are simulated using TMY3 data and considered using evacuated tube solar collectors. To size the collector area, the hottest day (4th of June at 3 PM) is selected to fulfill the maximum cooling demand and according to amount of solar radiation, ambient temperature, and energy required by generator, the number of collectors is defined. Generally, the solar system is found to be effective and covered 35% of heating demand to run the cooling system continuously through the cooling season.
机译:合成制冷剂中不断增加的CO2排放和臭氧消耗是严重的环境问题,对科学界构成了挑战。吸收式冷却系统为利用低级能源产生冷却效果提供了范围。太阳能是这些低品位能源之一,考虑到制冷需求随太阳辐射强度的增加而增加,因此太阳能制冷已被视为合理的解决方案。本文在第一阶段包括两个不同的模拟阶段。 ,对具有恒定冷却能力的单效应溴化锂吸收式冷却系统进行了建模,并研究了环境温度和发生器温度对浓度和强溶液流速的影响。然后,通过改变所有参数来分析发生器所需的能量和由此产生的性能系数(COP),例如,浓溶液浓度和弱溶液浓度,发生器温度和环境温度。该仿真表明,在更高的环境温度下需要提高发电机温度,并且有一个最佳发电机温度可以提供最高的COP。使用控制系统后的总COP在0.75至0.85之间。在下一步分析中,使用TMY3数据模拟拉斯维加斯冷却季节(5月至9月)的太阳位置和热水产量,并使用抽空管考虑太阳能集热器。为了确定收集器的面积,选择最热的一天(6月4日下午3点)以满足最大的制冷需求,并根据太阳辐射量,环境温度和发电机所需的能量来定义收集器的数量。通常,发现太阳能系统是有效的,可满足35%的供热需求,以在整个冷却季节连续运行冷却系统。

著录项

  • 作者

    Jahandardoost, Mohsen.;

  • 作者单位

    University of Nevada, Las Vegas.;

  • 授予单位 University of Nevada, Las Vegas.;
  • 学科 Engineering Mechanical.;Alternative Energy.
  • 学位 M.S.E.
  • 年度 2015
  • 页码 81 p.
  • 总页数 81
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:52:55

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号