首页> 外文学位 >Rock typing in tight gas sands: A case study in lance and mesaverde formations from Jonah Field.
【24h】

Rock typing in tight gas sands: A case study in lance and mesaverde formations from Jonah Field.

机译:致密气砂中的岩石分型:以乔纳菲尔德油田的长矛和中观地层为例。

获取原文
获取原文并翻译 | 示例

摘要

The Jonah field is one of the biggest tight gas sand fields in the Green River basin. Production profiles from its deeper sections show high liquid hydrocarbons close to the Pinedale anticline, especially in Mesaverde and Lance formations. To assess the potential of condensate production, new approaches for rock classi_cation are needed that will allow us to differentiate between discontinuous sandstone layers and the interbedded siltstones. Currently, the only cut off used is for gamma ray: rocks below 75 API are designated as sandstones. Although, significant porosity and permeability variations occur within the sandstone zones, the only criterium used to differentiate between reservoir and non-reservoir rocks is porosity: sandstones with porosity > 6% are considered reservoir quality rocks. Porosity is considered main controlling factor on permeability. A 6% porosity cut off in sandstones was used in net-pay calculations. However, hydraulic rock typing demonstrates permeability is dependent on main pore throat radius, rather than porosity. This study presents rock typing for tight sandstones and siltstones with an understanding of petrophysical properties such as pore structure, porosity, permeability, and cementation.;I studied 14 samples from the Mesaverde and Lance Formations with lithologies varying from clean sandstone to mudstone. X-ray diffraction (XRD) mineralogy and mercury injection capillary pressure (MICP) were measured for all samples. NMR transverse relaxation times (T2) at 2 MHz were also measured for 10 water saturated samples. Nitrogen adsorption tests were performed on 8 samples. Ultrasonic velocities from 10 samples were measured at different confining pressure conditions. Thin section petrography was used to analyze the cementation and pseudomatrix clay effects on pore and pore throat size.;MICP data are used to subdivide rocks into three groups based on pore throat size distribution: reservoir sandstones, non-reservoir sandstone and siltstone/mudstone. Dominant pore throat size for reservoir and non-reservoir sandstones are 400 and 100 nm, respectively. In order to apply pore throat size rock typing to downhole measurements, NMR pore size classification is used to identify formations. Pore size from NMR demonstrated equivalent behavior to pore throat size from MICP. The logarithmic mean values of T 2 transverse relaxation times for reservoir, non-reservoir sandstone and siltstone/mudstone are 22.2 ms, 3.4 ms and 0.29 ms, respectively. Clear separation of reservoir sandstone, non-reservoir sandstone and siltstone is seen based on compressibility behavior from compressional velocity during initial pressure loading. Reservoir sandstone demonstrates the highest compressibility. In addition, siltstone and mudstone were separated based on log differential pore volume distribution from N2 adsorption data.;Based on pore size distribution data, four main rock types are identified in Lance and Mesaverde formations in Jonah field. Rock typing based on gamma ray and porosity logs can be considered as rock classification of end members. To capture transitional behavior in between end members, pore size distribution is needed in logging application. Since NMR T2 distribution show similar spectra to MICP throat size distribution, the rock typing technique can be applied using NMR log data. Separation of mudstone from siltstone can be used for identification of shale end points in log data. Porosity and resistivity of shale end points are inputs in water saturation calculations.
机译:约拿气田是格林河流域最大的致密气砂田之一。从深部的生产资料显示,靠近派恩代尔背斜的液态烃含量较高,尤其是在梅萨韦德和兰斯地层。为了评估凝析油的生产潜力,需要采用新的岩石分类方法,使我们能够区分不连续的砂岩层和互层的粉砂岩。目前,唯一用于伽玛射线的边界是:API低于75的岩石被指定为砂岩。尽管在砂岩区域内会出现显着的孔隙度和渗透率变化,但用于区分储层和非储层岩石的唯一判据是孔隙度:孔隙度> 6%的砂岩被认为是储层质量的岩石。孔隙率被认为是影响渗透率的主要控制因素。净工资计算中使用了砂岩中6%的孔隙度截止值。然而,水硬岩分型表明渗透率取决于主要孔喉半径,而不是孔隙度。这项研究介绍了致密砂岩和粉砂岩的岩石分型,并了解了岩石的物理性质,例如孔隙结构,孔隙度,渗透性和胶结作用。测量所有样品的X射线衍射(XRD)矿物学和汞注入毛细管压力(MICP)。还对10个水饱和样品进行了2 MHz的NMR横向弛豫时间(T2)的测量。对8个样品进行了氮吸附测试。在不同的围压条件下测量了10个样品的超声波速度。薄层岩石学分析了胶结作用和假基质粘土对孔隙和孔喉尺寸的影响。MICP数据根据孔喉尺寸分布将岩石分为三类:储层砂岩,非储层砂岩和粉砂岩/泥岩。储层和非储层砂岩的主要孔喉尺寸分别为400和100 nm。为了将孔喉大小的岩石类型应用于井下测量,使用NMR孔大小分类来识别地层。 NMR测得的孔尺寸与MICP测得的孔喉尺寸等效。储层,非储层砂岩和粉砂岩/泥岩的T 2横向弛豫时间的对数平均值分别为22.2 ms,3.4 ms和0.29 ms。根据初始压力加载过程中压缩速度与压缩速度的关系,可以看到储层砂岩,非储层砂岩和粉砂岩的清晰分离。储层砂岩具有最高的可压缩性。此外,根据N 2吸附数据的对数微分孔体积分布,将粉砂岩和泥岩分离。基于孔径分布数据,在乔纳油田的兰斯和梅萨维德地层中识别出四种主要岩石类型。基于伽马射线和孔隙率测井的岩石分型可以被认为是末端构件的岩石分类。为了捕获端部成员之间的过渡行为,在测井应用中需要孔径分布。由于NMR T2分布显示出与MICP喉咙尺寸分布相似的光谱,因此可以使用NMR测井数据应用岩石分型技术。泥岩和粉砂岩的分离可用于识别测井数据中的页岩终点。页岩终点的孔隙度和电阻率是水饱和度计算中的输入。

著录项

  • 作者

    Aliyev, Elshan.;

  • 作者单位

    Colorado School of Mines.;

  • 授予单位 Colorado School of Mines.;
  • 学科 Petroleum engineering.;Geophysics.
  • 学位 M.S.
  • 年度 2015
  • 页码 83 p.
  • 总页数 83
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:52:51

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号