首页> 外文学位 >Carbon dioxide sequestration by mineral carbonation of iron-bearing minerals.
【24h】

Carbon dioxide sequestration by mineral carbonation of iron-bearing minerals.

机译:通过含铁矿物的矿物碳化来隔离二氧化碳。

获取原文
获取原文并翻译 | 示例

摘要

Carbon dioxide (CO2) is formed when fossil fuels such as oil, gas and coal are burned in power producing plants. CO2 is naturally found in the atmosphere as part of the carbon cycle, however it becomes a primary greenhouse gas when human activities disturb this natural balanced cycle by increasing levels in the atmosphere. In light of this fact, greenhouse gas mitigation strategies have garnered a lot of attention. Carbon capture, utilization and sequestration (CCUS) has emerged as a possible strategy to limit CO2 emissions into the atmosphere. The technology involves capturing CO2 at the point sources, using it for other markets or transporting to geological formations for safe storage. This thesis aims to understand and probe the chemistry of the reactions between CO2 and iron-bearing sediments to ensure secure storage for millennia.;The dissertation work presented here focused on trapping CO2 as a carbonate mineral as a permanent and secure method of CO2 storage. The research also explored the use of iron-bearing minerals found in the geological subsurface as candidates for trapping CO2 and sulfide gas mixtures as siderite (FeCO3) and iron sulfides. Carbon dioxide sequestration via the use of sulfide reductants of the iron oxyhydroxide polymorphs lepidocrocite, goethite and akaganeite with supercritical CO 2 (scCO2) was investigated using in situ attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The exposure of the different iron oxyhydroxides to aqueous sulfide in contact with scCO2 at ~70-100 °C resulted in the partial transformation of the minerals to siderite (FeCO3). The order of mineral reactivity with regard to siderite formation in the scCO2/sulfide environment was goethite < lepidocrocite ≤ akaganeite. Overall, the results suggested that the carbonation of lepidocrocite and akaganeite with a CO2 waste stream containing ~1-5% H2S would sequester both the carbon and sulfide efficiently. Hence, it might be possible to develop a process that could be associated with large CO2 point sources in locations without suitable sedimentary strata for subsurface sequestration.;This thesis also investigates the effect of salinity on the reactions between a ferric-bearing oxide phase, aqueous sulfide, and scCO2. ATR-FTIR was again used as an in situ probe to follow product formation in the reaction environment. X-ray diffraction along with Rietveld refinement was used to determine the relative proportion of solid product phases. ATR-FTIR results showed the evolution of siderite (FeCO3) in solutions containing NaCl(aq) concentrations that varied from 0.10 to 4.0 M. The yield of siderite was greatest under solution ionic strength conditions associated with NaCl(aq) concentrations of 0.1-1 M (siderite yield 40% of solid product) and lowest at the highest ionic strength achieved with 4 M NaCl(aq) (20% of solid product). Based partly on thermochemical calculations, it is suggested that a decrease in the concentration of aqueous HCO3- and a corresponding increase in co-ion formation, (i.e., NaHCO3) with increasing NaCl(aq) concentration resulted in the decreasing yield of siderite product. At all the ionic strength conditions used in this study, the most abundant solid phase product present after reaction was hematite (Fe2O3) and pyrite (FeS 2). The former product likely formed via dissolution/reprecipitation reactions, whereas the reductive dissolution of ferric iron by the aqueous sulfide likely preceded the formation of pyrite. These in situ experiments allowed the ability to follow the reaction chemistry between the iron oxyhr(oxide), aqueous sulfide and CO2 under conditions relevant to subsurface conditions. Furthermore, very important results from these small-scale experiments show this process can be a potentially superior and operable method for mitigating CO2 emissions.
机译:在发电厂燃烧石油,天然气和煤炭等化石燃料时会形成二氧化碳。作为碳循环的一部分,自然会在大气中发现二氧化碳,但是当人类活动通过增加大气中的碳水平而扰乱这种自然平衡的循环时,二氧化碳便成为主要的温室气体。有鉴于此,减少温室气体的策略已经引起了广泛关注。碳捕集,利用和封存(CCUS)已成为限制二氧化碳向大气中排放的一种可行策略。该技术涉及在点源处捕获CO2,将其用于其他市场或运输到地质构造以进行安全存储。本文旨在了解和探究二氧化碳与含铁沉积物之间的化学反应,以确保千年的安全储存。论文的主要工作是将二氧化碳作为一种碳酸盐矿物,作为一种永久,安全的储存方法进行研究。该研究还探索了利用在地质地下发现的含铁矿物来捕获二氧化碳和硫化物气体混合物(如菱铁矿(FeCO3)和硫化铁)的方法。使用原位衰减全反射傅里叶变换红外光谱(ATR-FTIR),X射线衍射(XRD)研究了使用超临界CO 2(scCO2)的羟基氧化铁多晶型硅铁矿,针铁矿和赤铁矿的硫化物还原剂隔离二氧化碳的方法。 )和透射电子显微镜(TEM)。在〜70-100°C下,不同的羟基氧化铁暴露于与scCO2接触的硫化氢水溶液中,导致矿物部分转化为菱铁矿(FeCO3)。在scCO2 /硫化物环境中,与菱铁矿形成有关的矿物反应性顺序为针铁矿<纤铁矿≤赤铁矿。总体而言,结果表明,用含约1-5%H2S的CO2废料将碳纤铁矿和高铁碳酸盐碳酸化会有效地隔离碳和硫化物。因此,可能有可能开发出一种方法,该方法可能与在没有合适的沉积地层的情况下进行地下封存的地点中的大型CO2点源相关联。;本论文还研究了盐度对含铁氧化物相与水相之间反应的影响。硫化物和scCO2。 ATR-FTIR再次用作原位探针,以追踪反应环境中产物的形成。 X射线衍射与Rietveld精制一起用于确定固体产物相的相对比例。 ATR-FTIR结果表明,在NaCl(aq)浓度从0.10到4.0 M的溶液中,菱铁矿(FeCO3)的演化。在溶液离子强度条件下,NaCl(aq)浓度为0.1-1时,菱铁矿的产量最大。 M(菱铁矿产率为固体产物的40%),在4 M NaCl(aq)(固体产物为20%)达到的最高离子强度下最低。部分基于热化学计算,表明随着NaCl(aq)浓度的增加,HCO3-水溶液的浓度降低,并且共离子形成(即NaHCO3)相应增加,导致菱铁矿产品的收率降低。在本研究中使用的所有离子强度条件下,反应后存在的最丰富的固相产物是赤铁矿(Fe2O3)和黄铁矿(FeS 2)。前一种产物可能是通过溶解/再沉淀反应形成的,而硫化铁水溶液对三价铁的还原性溶解可能是在黄铁矿形成之前。这些原位实验使人们能够在与地下条件有关的条件下跟踪氧化铁,氧化物水溶液,硫化物和二氧化碳之间的反应化学。此外,这些小规模实验的非常重要的结果表明,该过程可能是减轻CO2排放的潜在优越且可操作的方法。

著录项

  • 作者

    Lammers, Kristin D.;

  • 作者单位

    Temple University.;

  • 授予单位 Temple University.;
  • 学科 Analytical chemistry.;Geochemistry.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 231 p.
  • 总页数 231
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号