首页> 外文学位 >Designed synthesis of nanoporous organic polymers for selective gas uptake and catalytic applications.
【24h】

Designed synthesis of nanoporous organic polymers for selective gas uptake and catalytic applications.

机译:用于选择性气体吸收和催化应用的纳米孔有机聚合物的设计合成。

获取原文
获取原文并翻译 | 示例

摘要

Design and synthesis of porous organic polymers have attracted considerable attentions during the past decade due to their wide range of applications in gas storage, gas separation, energy conversion, and catalysis. Porous organic polymers can be pre-synthetically and post-synthetically functionalized with a wide variety of functionalities for desirable applications. Along these pursuits, we introduced new synthetic strategies for preparation of porous organic polymers for selective CO2 capture and catalytic applications. Porous azo-linked polymers (ALPs) were synthesized by an oxidative reaction of amine-based monomers using copper(I) as a catalyst which leads to azo-linkage formation. ALPs exhibit high surface areas of up to 1200 m2 g-1 and have high chemical and thermal stabilities. The nitrogen atoms of the azo group can act as Lewis bases and the carbon atom of CO2 can act as a Lewis acid. Therefore, ALPs show high CO2 uptake capacities due to this Lewis acid-based interaction. The potential applications of ALPs for selective CO2 capture from flue gas, natural gas, and landfill gas under pressure-swing and vacuum swing separation settings were studied. Due to their high CO2 uptake capacity, selectivity, and regenerability, ALPs are among the best porous organic frameworks for selective CO2 capture. In our second project, a new bis(imino)pyridine-linked porous polymer (BIPLP-1) was synthesized and post-synthetically functionalized with Cu(BF4)2 for highly selective CO2 capture. BIPLP-1 was synthesized via a condensation reaction between 2,6-pyridinedicarboxaldehyde and 1,3,5-tris(4-aminophenyl)benzene, wherein the bis(imino)pyridine linkages are formed in-situ during polymerization. The functionalization of the polymer with Cu(BF4)2 was achieved by treatment of the polymer with a solution of Cu(BF4)2 via complexation of copper cations with bis(imino)pyridine moieties of the polymer. BF4- ions can act Lewis base and CO2 can act as a Lewis acid; and therefore, the functionalized polymer shows high binding affinity for CO2 due to this Lewis acid-based interaction. The functionalization of the pores with Cu(BF4)2 resulted in a significant enhancement in CO2 binding energy, CO2 uptake capacity, and CO2 selectivity values. Due to high reactivity of bis(imino)pyridines toward transitions metals, BIPLP-1 can be post-synthetically functionalized with a wide variety of inorganic species for CO2 separation and catalytic applications.
机译:由于多孔有机聚合物在气体存储,气体分离,能量转化和催化方面的广泛应用,在过去的十年中,多孔有机聚合物的设计和合成引起了广泛的关注。多孔有机聚合物可以被合成前和合成后官能化,具有各种功能,可用于所需的应用。沿着这些追求,我们引入了新的合成策略来制备用于选择性CO2捕获和催化应用的多孔有机聚合物。使用铜(I)作为催化剂,通过胺基单体的氧化反应合成了偶氮多孔聚合物(ALP),这导致了偶氮键的形成。 ALP具有高达1200 m2 g-1的高表面积,并具有很高的化学和热稳定性。偶氮基团的氮原子可以充当路易斯碱,而CO 2的碳原子可以充当路易斯酸。因此,由于这种基于路易斯酸的相互作用,ALP表现出高的CO2吸收能力。研究了在低压变压和真空变压分离设置下,ALP在烟气,天然气和垃圾填埋气中选择性捕集CO2的潜在应用。由于其高的CO2吸收能力,选择性和可再生性,ALP是用于选择性CO2捕集的最佳多孔有机骨架之一。在我们的第二个项目中,合成了一种新的双(亚氨基)吡啶连接的多孔聚合物(BIPLP-1),并用Cu(BF4)2进行了合成后功能化,以实现高度选择性的CO2捕集。 BIPLP-1是通过2,6-吡啶二甲醛与1,3,5-三(4-氨基苯基)苯之间的缩合反应合成的,其中双(亚氨基)吡啶键是在聚合过程中原位形成的。通过将铜阳离子与聚合物的双(亚氨基)吡啶部分络合,用Cu(BF4)2溶液处理聚合物,从而实现了具有Cu(BF4)2的聚合​​物功能化。 BF4-离子可以起路易斯碱的作用,而CO2可以起路易斯酸的作用;因此,由于这种基于路易斯酸的相互作用,官能化聚合物对CO2的结合力高。 Cu(BF4)2对孔的功能化导致CO2结合能,CO2吸收能力和CO2选择性值的显着提高。由于双(亚氨基)吡啶对过渡金属的高反应活性,BIPLP-1可以用多种无机物进行合成后功能化,用于CO2分离和催化应用。

著录项

  • 作者

    Arab, Pezhman.;

  • 作者单位

    Virginia Commonwealth University.;

  • 授予单位 Virginia Commonwealth University.;
  • 学科 Nanoscience.;Nanotechnology.;Chemistry.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 204 p.
  • 总页数 204
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号