首页> 外文学位 >Electromechanical modeling of a honeycomb core integrated vibration energy converter with increased specific power for energy harvesting applications.
【24h】

Electromechanical modeling of a honeycomb core integrated vibration energy converter with increased specific power for energy harvesting applications.

机译:蜂窝芯集成振动能量转换器的机电模型,具有增加的比功率,用于能量收集应用。

获取原文
获取原文并翻译 | 示例

摘要

Innovation in integrated circuit technology along with improved manufacturing processes has resulted in considerable reduction in power consumption of electromechanical devices. Majority of these devices are currently powered by batteries. However, the issues posed by batteries, including the need for frequent battery recharge/replacement has resulted in a compelling need for alternate energy to achieve self-sufficient device operation or to supplement battery power. Vibration based energy harvesting methods through piezoelectric transduction provides with a promising potential towards replacing or supplementing battery power source. However, current piezoelectric energy harvesters generate low specific power (power-to-weight ratio) when compared to batteries that the harvesters seek to replace or supplement.;In this study, the potential of integrating lightweight cellular honeycomb structures with existing piezoelectric device configurations (bimorph) to achieve higher specific power is investigated. It is shown in this study that at low excitation frequency ranges, replacing the solid continuous substrate of a conventional piezoelectric bimorph with honeycomb structures of the same material results in a significant increase in power-to-weight ratio of the piezoelectric harvester. In order to maximize the electrical response of vibration based power harvesters, the natural frequency of these harvesters is designed to match the input driving frequency. The commonly used technique of adding a tip mass is employed to lower the natural frequency (to match driving frequency) of both, solid and honeycomb substrate bimorphs. At higher excitation frequency, the natural frequency of the traditional solid substrate bimorph can only be altered (to match driving frequency) through a change in global geometric design parameters, typically achieved by increasing the thickness of the harvester. As a result, the size of the harvester is increased and can be disadvantageous especially if the application imposes a space/size constraint. Moreover, the bimorph with increased thickness will now require a larger mechanical force to deform the structure which can fall outside the input ambient excitation amplitude range. In contrast, the honeycomb core bimorph offers an advantage in terms of preserving the global geometric dimensions. The natural frequency of the honeycomb core bimorph can be altered by manipulating honeycomb cell design parameters, such as cell angle, cell wall thickness, vertical cell height and inclined cell length. This results in a change in the mass and stiffness properties of the substrate and hence the bimorph, thereby altering the natural frequency of the harvester.;Design flexibility of honeycomb core bimorphs is demonstrated by varying honeycomb cell parameters to alter mass and stiffness properties for power harvesting. The influence of honeycomb cell parameters on power generation is examined to evaluate optimum design to attain highest specific power. In addition, the more compliant nature of a honeycomb core bimorph decreases susceptibility towards fatigue and can increase the operating lifetime of the harvester.;The second component of this dissertation analyses an uncoupled equivalent circuit model for piezoelectric energy harvesting. Open circuit voltage developed on the piezoelectric materials can be easily computed either through analytical or finite element models. The efficacy of a method to determine power developed across a resistive load, by representing the coupled piezoelectric electromechanical problem with an external load as an open circuit voltage driven equivalent circuit, is evaluated. The lack of backward feedback at finite resistive loads resulting from such an equivalent representation is examined by comparing the equivalent circuit model to the governing equations of a fully coupled circuit model for the electromechanical problem. It is found that the backward feedback is insignificant for weakly coupled systems typically seen in micro electromechanical systems and other energy harvesting device configurations with low coupling. For moderate to high coupling systems, a correction factor based on a calibrated resistance is presented which can be used to evaluate power generation at a specific resistive load.
机译:集成电路技术的创新以及改进的制造工艺已使机电设备的功耗大大降低。这些设备中的大多数目前由电池供电。然而,由电池引起的问题,包括对频繁的电池充电/更换的需求,导致迫切需要替代能量以实现设备的自给自足或补充电池功率。通过压电换能的基于振动的能量收集方法为更换或补充电池电源提供了广阔的前景。但是,与收集器试图更换或补充的电池相比,当前的压电能量收集器产生的比功率低(功率重量比).;在这项研究中,将轻巧的蜂窝状蜂窝结构与现有的压电设备配置整合的潜力(双晶型)以实现更高的比功率。在这项研究中表明,在低激励频率范围内,用相同材料的蜂窝结构代替常规压电双压电晶片的固态连续基板会导致压电收割机的功率重量比显着增加。为了使基于振动的功率采集器的电响应最大化,这些采集器的固有频率被设计为与输入驱动频率匹配。通常使用添加尖端质量的技术来降低固体和蜂窝基材双压电晶片的固有频率(以匹配驱动频率)。在较高的激励频率下,只能通过更改总体几何设计参数(通常通过增加收割机的厚度来实现)来更改(与驱动频率匹配)传统固体基质双压电晶片的固有频率。结果,收割机的尺寸增加并且可能是不利的,特别是如果该应用施加空间/尺寸约束。而且,具有增加的厚度的双压电晶片现在将需要更大的机械力来使结构变形,该结构可能落入输入环境激发幅度范围之外。相反,在保持整体几何尺寸方面,蜂窝芯双压电晶片具有优势。蜂窝芯双压电晶片的固有频率可以通过操纵蜂窝孔设计参数(例如孔角度,孔壁厚度,垂直孔高度和倾斜孔长度)来更改。这会导致基材和双压电晶片的质量和刚度特性发生变化,从而改变收割机的固有频率。通过改变蜂窝单元参数来改变功率的质量和刚度特性,证明了蜂窝芯双压电晶片的设计灵活性。收获。检查蜂窝单元参数对发电的影响,以评估最佳设计以获得最高比功率。此外,蜂窝状双压电晶片的更柔顺的性质降低了对疲劳的敏感性,并可以增加收集器的使用寿命。本论文的第二部分分析了压电能量收集的解耦等效电路模型。压电材料上产生的开路电压可以通过分析或有限元模型轻松计算。通过将耦合的压电机电问题与外部负载表示为开路电压驱动的等效电路,来评估确定跨阻性负载产生的功率的方法的有效性。通过将等效电路模型与机电问题的完全耦合电路模型的控制方程进行比较,可以检查出由这种等效表示导致的在有限电阻负载下缺乏向后反馈的情况。已经发现,对于微机电系统和其他具有低耦合的能量收集设备配置中常见的弱耦合系统,后向反馈微不足道。对于中到高耦合系统,提出了一种基于校准电阻的校正因子,该校正因子可用于评估特定电阻负载下的发电量。

著录项

  • 作者

    Chandrasekharan, Nataraj.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Alternative Energy.;Mechanical engineering.;Theoretical physics.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 136 p.
  • 总页数 136
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:52:53

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号