首页> 外文学位 >Time-Domain TeraHertz Spectroscopy and Observational Probes of Prebiotic Interstellar Gas and Ice Chemistry.
【24h】

Time-Domain TeraHertz Spectroscopy and Observational Probes of Prebiotic Interstellar Gas and Ice Chemistry.

机译:益生元星际气体和冰化学的时域太赫兹光谱学和观测探针。

获取原文
获取原文并翻译 | 示例

摘要

Understanding the origin of life on Earth has long fascinated the minds of the global community, and has been a driving factor in interdisciplinary research for centuries. Beyond the pioneering work of Darwin, perhaps the most widely known study in the last century is that of Miller & Urey, who examined the possibility of the formation of prebiotic chemical precursors on the primordial Earth. More recent studies have shown that amino acids, the chemical building blocks of the biopolymers that comprise life as we know it on Earth, are present in meteoritic samples, and that the molecules extracted from the meteorites display isotopic signatures indicative of an extraterrestrial origin. The most recent major discovery in this area has been the detection of glycine (NH2CH2COOH), the simplest amino acid, in pristine cometary samples returned by the NASA STARDUST mission. Indeed, the open questions left by these discoveries, both in the public and scientific communities, hold such fascination that NASA has designated the understanding of our "Cosmic Origins" as a key mission priority.;Despite these exciting discoveries, our understanding of the chemical and physical pathways to the formation of prebiotic molecules is woefully incomplete. This is largely because we do not yet fully understand how the interplay between grain-surface and sub-surface ice reactions and the gasphase affects astrophysical chemical evolution, and our knowledge of chemical inventories in these regions is incomplete. The research presented here aims to directly address both these issues, so that future work to understand the formation of prebiotic molecules has a solid foundation from which to work.;From an observational standpoint, a dedicated campaign to identify hydroxylamine (NH2OH), potentially a direct precursor to glycine, in the gas-phase was undertaken. No trace of NH2OH was found. These observations motivated a refinement of the chemical models of glycine formation, and have largely ruled out a gas-phase route to the synthesis of the simplest amino acid in the ISM. A molecular mystery in the case of the carrier of a series of transitions was resolved using observational data toward a large number of sources, confirming the identity of this important carbon-chemistry intermediate B11244 as l-C3H+ and identifying it in at least two new environments. Finally, the doubly-nitrogenated molecule carbodiimide HNCNH was identified in the ISM for the first time through maser emission features in the centimeter-wavelength regime.;In the laboratory, a TeraHertz Time-Domain Spectrometer was constructed to obtain the experimental spectra necessary to search for solid-phase species in the ISM in the THz region of the spectrum. These investigations have shown a striking dependence on large-scale, long-range (i.e. lattice) structure of the ices on the spectra they present in the THz. A database of molecular spectra has been started, and both the simplest and most abundant ice species, which have already been identified, as well as a number of more complex species, have been studied. The exquisite sensitivity of the THz spectra to both the structure and thermal history of these ices may lead to better probes of complex chemical and dynamical evolution in interstellar environments.
机译:长期以来,了解地球上的生命起源一直吸引着全球社会的关注,并且数百年来一直是跨学科研究的驱动因素。除了达尔文的开创性工作外,上世纪最广为人知的研究是米勒和尤里的研究,他研究了原始地球上益生元化学前体形成的可能性。最近的研究表明,氨基酸是构成地球上已知生命的生物聚合物的化学组成部分,存在于陨石样品中,从陨石中提取的分子显示出表明地球外起源的同位素特征。该领域的最新发现是在NASA STARDUST任务返回的原始彗星样品中检测到最简单的氨基酸甘氨酸(NH2CH2COOH)。的确,这些发现在公众和科学界留下的悬而未决的问题引起了人们的极大兴趣,以至于NASA已将对我们“宇宙起源”的理解指定为主要任务任务。益生元分子形成的物理途径还很不完整。这主要是因为我们尚未完全了解谷物表面和地下冰反应与气相之间的相互作用如何影响天体化学演化,而我们对这些地区化学库存的了解还不完整。此处提出的研究旨在直接解决这两个问题,以便将来了解益生元分子形成的工作具有扎实的基础。;从观察的角度来看,专门致力于识别羟胺(NH2OH)的活动可能在气相中进行了甘氨酸的直接前体。没有发现NH 2 OH的痕迹。这些发现促使人们对甘氨酸形成的化学模型进行了改进,并在很大程度上排除了在ISM中合成最简单氨基酸的气相途径。使用大量数据的观测数据解决了一系列过渡的情况下的分子奥秘,从而确认了这种重要的碳化学中间体B11244作为I-C3H +的身份,并在至少两个新环境中对其进行了鉴定。最后,通过厘米波长范围内的maser发射特征,首次在ISM中鉴定了双氮化分子碳二亚胺HNCNH .;在实验室中,构建了TeraHertz时域光谱仪以获得所需的实验光谱在频谱的THz区域中的ISM中为固相物质。这些研究表明,冰的大范围,远距离(即晶格)结构显着依赖于它们在太赫兹中呈现的光谱。已经建立了分子光谱数据库,已经研究了最简单和最丰富的冰种,以及已经确定的许多更复杂的冰种。太赫兹光谱对这些冰的结构和热历史的精妙灵敏度可能会导致更好地探测星际环境中复杂的化学和动力学演化。

著录项

  • 作者

    McGuire, Brett Andrew.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Chemistry Physical.;Physics Astronomy and Astrophysics.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 219 p.
  • 总页数 219
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号