首页> 外文学位 >Towards Sustainable Remediation of Metal Contaminants from Wastewater: A Novel Nano Metal Oxide Impregnated Chitosan-based Adsorption Technology.
【24h】

Towards Sustainable Remediation of Metal Contaminants from Wastewater: A Novel Nano Metal Oxide Impregnated Chitosan-based Adsorption Technology.

机译:致力于可持续修复废水中的金属污染物:一种新型的纳米金属浸渍壳聚糖吸附技术。

获取原文
获取原文并翻译 | 示例

摘要

Effective management of industrial wastewater systems for resource recovery and reuse is critical to the long-term sustainability of our planet. With the advancement of science and technology, the increasingly multifaceted nature of mining, fabrication, and transportation industries and consumer use of more complex materials results in significant contamination of our water sources through runoff, discharge, and leaching. The development of technologies to mitigate this environmental impact is immediately necessary to reduce adverse consequences on human health and the environment. This dissertation is focused on addressing this challenge while using sustainable materials and practices through the development of a novel chitosan-based adsorbent technology platform that is effective for the robust remediation of challenging aqueous matrices containing multiple inorganic compounds, including anthropogenic discharges and those occurring naturally.;Metal oxide impregnated chitosan beads (MICB) were synthesized by embedding nanocrystalline metal oxides within a chitosan matrix. This adsorbent was characterized and evaluated for adaptability to various target contaminants and robustness to changing system conditions. Specifically, MICB were successful for the remediation of arsenic and in this context, a mechanistic understanding of the serial oxidation-adsorption of arsenite and arsenate is presented. Selenium remediation was also considered, in a comprehensive and systematic study that included nanocrystalline Al2O3-impregnated chitosan beads (AICB), nanocrystalline TiO2-impregnated chitosan beads (TICB), and their individual components. In both cases, success of MICB was attributed to the synergistic effects of including multiple active components in the adsorbent design, notably including the active role of chitosan in the adsorbent performance. In both system applications, the impacts of background ions were evaluated, and the need to develop a selective adsorption process to target particular contaminants in the presence of background ions was established. To address this need, a mechanistic study on the selective binding of arsenate, selenite, and phosphate to a chitosan-copper complex was studied. Due to electrostatic and steric considerations, phosphate preferentially binds with the monodentate form of the chitosan-copper complex, and arsenate and selenite preferentially bind with the bidentate form of this complex. This enables the potential design of an adsorbent that is selective for the target compounds of interest, such as arsenic and selenium, without losing removal efficiency due to the presence of competitive background ions, such as phosphate.;There are many remediation strategies for aqueous systems, including but not limited to adsorption, available for the treatment of these complex wastewater streams. The MICB technology is a unique approach to this challenge, as it considers environmental health through sustainable practices throughout its usable lifetime. By utilizing the principles of green engineering (Anastas and Zimmerman, 2003) to address this environmental challenge, we can avoid creating new sustainability challenges for the future.
机译:有效管理工业废水系统以进行资源回收和再利用对于我们星球的长期可持续性至关重要。随着科学技术的进步,采矿,制造和运输行业的多面性以及消费者使用更复杂的材料导致我们的水资源通过径流,排放和浸出而受到严重污染。为减轻对人类健康和环境的不利影响,迫切需要开发减轻这种环境影响的技术。本论文致力于通过使用基于壳聚糖的新型吸附剂技术平台开发可持续的材料和实践来应对这一挑战,该平台可有效修复含有多种无机化合物(包括人为排放物和天然排放物)的具有挑战性的水性基质。 ;通过将纳米晶体金属氧化物嵌入壳聚糖基质中,合成了金属氧化物浸渍的壳聚糖珠(MICB)。对该吸附剂进行表征并评估其对各种目标污染物的适应性以及对变化的系统条件的耐用性。具体地说,MICB在砷的修复方面是成功的,在此背景下,提出了对砷和砷的系列氧化吸附的机理的理解。在一项全面而系统的研究中,还考虑了硒的修复,其中包括纳米晶浸渍Al2O3的壳聚糖微珠(AICB),纳米晶浸渍TiO2纳米的壳聚糖微珠(TICB)及其各个成分。在这两种情况下,MICB的成功都归因于在吸附剂设计中包括多种活性成分的协同效应,特别是壳聚糖在吸附剂性能中的积极作用。在这两种系统的应用中,都对背景离子的影响进行了评估,并建立了在背景离子存在的情况下开发选择性吸附工艺以靶向特定污染物的需求。为了满足这一需求,对砷酸盐,亚硒酸盐和磷酸盐与壳聚糖-铜复合物的选择性结合进行了机理研究。由于静电和空间的考虑,磷酸盐优先与壳聚糖-铜络合物的单齿形式结合,而砷酸盐和亚硒酸盐则优先与该络合物的二齿形式结合。这使得潜在的吸附剂设计成为可能,该吸附剂对目标目标化合物(例如砷和硒)具有选择性,而不会由于存在竞争性背景离子(例如磷酸盐)而损失去除效率。包括但不限于吸附,可用于处理这些复杂的废水流。 MICB技术是应对这一挑战的独特方法,因为它在整个使用寿命中都通过可持续实践来考虑环境健康。通过利用绿色工程原理(Anastas和Zimmerman,2003年)来应对这一环境挑战,我们可以避免为未来带来新的可持续性挑战。

著录项

  • 作者

    Yamani, Jamila.;

  • 作者单位

    Yale University.;

  • 授予单位 Yale University.;
  • 学科 Chemical engineering.;Water resources management.;Environmental engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 133 p.
  • 总页数 133
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号