首页> 外文学位 >Robust model development for evaluation of existing structures.
【24h】

Robust model development for evaluation of existing structures.

机译:用于评估现有结构的稳健模型开发。

获取原文
获取原文并翻译 | 示例

摘要

In the context of scientific computing, validation aims to determine the worthiness of a model in supporting critical decision making. This determination must occur given the imperfections in the mathematical representation resulting from the unavoidable idealizations of physics phenomena. Uncertainty in parameter values furthers the validation problems due to the inevitable lack of information about material properties, boundary conditions, loads, etc. which must be taken into account in making predictions about structural response. The determination of worthiness then becomes assessing whether an unavoidably imperfect mathematical model, subjected to poorly known input parameters, can predict sufficiently well in its intended purpose. The maximum degree of uncertainty in the model's input parameters which the model can tolerate and still produce predictions within a predefined error tolerance is termed as robustness of the model. A trade-off exists between a model's robustness to unavoidable uncertainty and its agreement with experiments, i.e. fidelity. This dissertation introduces the concept of satisfying boundary to evaluate such a trade-off. This boundary encompasses the model predictions that meet prescribed error tolerances. Decisions regarding allocation of resources for additional experiments to reduce uncertainty, relaxation of error tolerances, or the required confidence in the model predictions can be arrived at with the knowledge of this trade-off. This new approach for quantifying robustness based on satisfying boundaries is demonstrated on an application to a nonlinear finite element model of a historic masonry monument Fort Sumter.
机译:在科学计算的背景下,验证旨在确定模型在支持关键决策中的价值。鉴于不可避免的物理现象的理想化导致数学表示存在缺陷,因此必须进行这种确定。参数值的不确定性进一步加剧了验证问题,因为不可避免地缺乏有关材料特性,边界条件,载荷等方面的信息,在对结构响应进行预测时必须考虑这些信息。然后,确定价值就成为评估不可避免的不完善的数学模型,该模型在输入参数未知的情况下是否可以很好地预测其预期目的。在模型的输入参数中模型可以忍受的最大不确定性程度,模型仍然可以在预定的误差容限范围内产生预测,这被称为模型的鲁棒性。在模型对不可避免的不确定性的鲁棒性与与实验的一致性(即保真度)之间存在折衷。本文引入了满足边界的概念来评估这种折衷。该边界包含满足规定的误差容限的模型预测。可以在知道了这种折衷的基础上,做出有关为其他实验分配资源以减少不确定性,放宽误差容限或对模型预测所需的置信度的决策。在满足历史性砖石纪念碑萨姆特堡的非线性有限元模型的应用中,展示了这种基于满足边界的鲁棒性量化方法。

著录项

  • 作者

    Prabhu, Saurabh.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Civil engineering.;Agricultural engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 178 p.
  • 总页数 178
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号