首页> 外文学位 >Nanoformulation for anticancer drug delivery: Enhanced pharmacokinetics and circulation.
【24h】

Nanoformulation for anticancer drug delivery: Enhanced pharmacokinetics and circulation.

机译:用于抗癌药物递送的纳米制剂:增强的药代动力学和循环。

获取原文
获取原文并翻译 | 示例

摘要

In this study, we have explored the application of the Layer-by-Layer (LbL) assembly technique for improving injectable drug delivery systems of low soluble anticancer drugs (e.g. Camptothecin (CPT), Paclitaxel (PTX) or Doxorubicin (DOX)). For this study, a polyelectrolyte shell encapsulates different types of drug nanocores (e.g. soft core, nanomicelle or solid lipid nanocores).The low soluble drugs tend to crystallize and precipitate in an aqueous medium. This is the reason they cannot be injected and may have low concentrations and low circulation time in the blood. Even though these drugs when present in the cancer microenvironment have high anti-tumor inhibition, the delivery to the tumor site after intravenous administration is a challenge. We have used FDA-approved biopolymers for the process and elaborated formation of 60-90 nm diameter initial cores, which was stabilized by multilayer LbL shells for controlled release and longer circulation. A washless LbL assembly process was applied as an essential advancement in nano-assembly technology using low density nanocore (lipids) and preventing aggregation. This advancement reduced the number of process steps, enhanced drug loading capacity, and prevented the loss of expensive polyelectrolytes.;Finally, we elaborated a general nano-encapsulation process, which allowed these three important anticancer drug core-shell nanocapsules with diameters of ca. 100-130 nm (this small size is a record for LbL encapsulation technique) to be stable in the serum and the blood for at least one week, efficient for cancer cell culture studies, injectable to mice with circulation for 4 hrs, and effective in suppressing tumors. This work is divided into three studies. The first study (CHAPTER 4) explores the application of LbL assembly for encapsulating a soft core of albumin protein and CPT anticancer drug. In order to preserve the activity of drug in the core, a unique technique of pH reversal is employed where the first few layers of the LbL shell are assembled at acidic pH 3, and the final layers (2-3) are assembled at a slightly basic pH of 7.4. These LbL-encapsulated nanocores are not stable and immediately aggregate in water or the serum. A final layer of 5 kDa PEG was assembled to improve circulation time. It showed higher colloidal stability in PBS, high drug loading concentration of 0.5 mg/mL, and an improved drug chemical stability in Fetal Bovine Serum with high lactone fraction of 99%. It also showed 3 times improved cytotoxicity against glioblastoma cancer cells. For the first time we applied a new method of the LbL capsule assembly at different pH values, the first 4 bilayers at pH 3, and the following 3 bilayers at pH 7.4.;In the second study (CHAPTER 5), the developed LbL assembly for low solubility drug encapsulation was extended for the delivery of PTX loaded in nanomicelle cores. PTX, as a nanomicelle core, is encapsulated with fewer layers of LbL assembly, followed by an extra layer of PEG (PEGylation). A significant improvement was seen in reducing the process steps through reduction in the number of LbL layers, while smaller nano-colloids, ~100 nm, were produced with improved drug loading capacity, higher cytotoxicity, and high mice survival rate.;In the third study (CHAPTER 6), we have applied the concepts learned and the techniques developed from the previous two studies to modify the surface of the nanostructured solid lipid carriers (NLC) with LbL architecture, plus extra PEGylation. The NLC are co-loaded with DOX and docosahexaenoic acid (DHA). This study is an attempt to further increase drug circulation time in the blood. We improved the colloidal stability with a narrow distribution size, 128 nm, polydispersity of 0.098, a higher longevity in the blood, a 1.5 times lower accumulation in the liver, a 2.25 times higher accumulation in tumors, and a significant ~3.5 times greater tumor growth inhibition in 4T1 murine tumor model in mice.;In conclusion, we developed a general model of an LbL nanoassembly core-shell drug delivery system of three anticancer drugs. The capsules had diameters of ca. 100170 nm, were stable in the serum and the blood for three weeks, were injectable to small animals with a circulation time of 1-4 hrs., and effectively suppressed cancerous tumors in mice.
机译:在这项研究中,我们探索了分层(LbL)组装技术在改善低可溶性抗癌药物(例如喜树碱(CPT),紫杉醇(PTX)或阿霉素(DOX))的可注射药物输送系统中的应用。在本研究中,聚电解质壳包裹了不同类型的药物纳米核(例如软核,纳米胶束或固体脂质纳米核),低可溶性药物倾向于在水性介质中结晶并沉淀。这就是无法注射它们的原因,并且它们在血液中的浓度可能很低,循环时间也很短。尽管这些药物在癌症微环境中存在时具有很高的抗肿瘤抑制作用,但静脉内给药后向肿瘤部位的递送仍然是一个挑战。我们已经使用了FDA批准的生物聚合物进行加工,并精心制作了直径为60-90 nm的初始核心,并通过多层LbL壳层进行了稳定化,从而实现了控制释放和更长的循环。采用免洗的LbL组装工艺是使用低密度纳米核(脂质)并防止聚集的纳米组装技术的一项重要进步。这一进步减少了工艺步骤的数量,增强了药物的负载能力,并防止了昂贵的聚电解质的损失。最后,我们阐述了一种通用的纳米囊化工艺,该工艺使得这三个重要的抗癌药物核-壳纳米胶囊的直径约为。 100-130 nm(此小尺寸是LbL封装技术的记录),可在血清和血液中稳定至少1周,对癌细胞培养研究有效,可循环注射4 hr并在小鼠体内有效抑制肿瘤。这项工作分为三个研究。第一项研究(第4章)探讨了LbL装配体在封装白蛋白和CPT抗癌药物的软核中的应用。为了保持药物在核心中的活性,采用了独特的pH逆转技术,其中LbL壳的前几层在酸性pH 3下组装,最后几层(2-3)在略微pH下组装。碱性pH为7.4。这些LbL包裹的纳米核不稳定,会立即在水或血清中聚集。组装最后的5 kDa PEG层以改善循环时间。它在PBS中显示出更高的胶体稳定性,在0.5 mg / mL的高载药量下,在具有99%的高内酯分率的胎牛血清中显示出更高的药物化学稳定性。它还显示出对胶质母细胞瘤癌细胞的细胞毒性提高了3倍。我们首次在不同的pH值下应用LbL胶囊组装的新方法,前4个双层在pH 3下,随后的3个双层在pH 7.4下;在第二项研究中(第5章),开发了LbL组装对于低溶解度的药物封装,扩展了纳米颗粒核心中负载的PTX的递送。 PTX作为纳米胶束核心,被较少的LbL组装层封装,然后再加一层PEG(聚乙二醇化)。在通过减少LbL层的数量来减少工艺步骤方面看到了显着的改进,同时产生了较小的纳米胶体(〜100 nm),具有更高的载药量,更高的细胞毒性和较高的小鼠存活率。在研究(第6章)中,我们应用了从前两项研究中学到的概念和开发的技术来修饰具有LbL结构的纳米结构固体脂质载体(NLC)的表面,并进行了额外的PEG化。 NLC与DOX和二十二碳六烯酸(DHA)共同装载。这项研究是进一步增加血液中药物循环时间的尝试。我们改善了胶体稳定性,使其具有狭窄的分布尺寸,128 nm,0.098的多分散性,较高的血液寿命,在肝脏中的蓄积率低1.5倍,在肿瘤中的蓄积率高2.25倍,并且肿瘤显着大〜3.5倍在小鼠4T1鼠肿瘤模型中的生长抑制作用;总而言之,我们开发了三种抗癌药物的LbL纳米组装核壳药物递送系统的通用模型。胶囊的直径约为100170 nm在血清和血液中稳定了三周,可以以1-4小时的循环时间注射给小型动物,并有效抑制了小鼠的癌性肿瘤。

著录项

  • 作者

    Parekh, Gaurav.;

  • 作者单位

    Louisiana Tech University.;

  • 授予单位 Louisiana Tech University.;
  • 学科 Biomedical engineering.;Nanotechnology.;Pharmaceutical sciences.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号