首页> 外文学位 >Shape memory electrospun scaffolds for cell mechanobiology and bone regenerative applications.
【24h】

Shape memory electrospun scaffolds for cell mechanobiology and bone regenerative applications.

机译:用于细胞力学生物学和骨再生应用的形状记忆电纺支架。

获取原文
获取原文并翻译 | 示例

摘要

Tissue engineering scaffolds have traditionally been static physical structures poorly suited to mimick the complex dynamic behavior of in vivo microenvironments. Shape memory polymers (SMPs) may address this limitation. Recent work has achieved two-dimensional cytocompatible SMP substrates, of which the surface topography can be triggered to control cell behaviors. To enable further advances in "smart" functional tissue engineering scaffolds, the goal of this dissertation was to develop a programmable cytocompatible SMP scaffold and further investigate potential applications of the SMP scaffolds.;To achieve this goal, in Chapter 2, synthesis and characterization of a family of polyhedral oligosilsesquioxane (POSS)-containing, polyester-based thermoplastic polyurethanes (TPUs) was investigated, and the effect of caprolactone content and water plasticization on the glass transition temperature of the TPUs was explored. In Chapter 3, a programmable SMP scaffold capable of changing shape and internal architecture under cytocompatible conditions was developed using electrospinning. Cell morphology---cytoskeletal and nuclear alignment---was found to be directed by shape-memory-actuated changes in scaffold shape and internal architecture. Furthermore, cells remained viable and attached before and after scaffold architectural change.;The objective of Chapters 4 to 6 was to explore potential applications of programmable cytocompatible SMP scaffolds in bone regenerative medicine. In Chapter 4, the biomechanical feasibility of self-deploying shape memory polymer fixation---smart sleeve---was evaluated. The in vitro mechanical stabilization of the smart sleeve was compared to intramedullary (IM) nail using a mouse femoral transverse fracture model. The torsional mechanical stability provide by the smart sleeve was comparable to the IM nail; but the bending stability of the smart sleeve was significantly lower than the IM nail. In Chapter 5, the biological functionality of the smart sleeve employed as a supplementary stabilization device was investigated in an in vivo mouse critical-size defect model. Intraoperative deployment of the smart sleeve could be triggered by 45 °C saline irrigation. We found that the presence of the smart sleeve did not interfere with the bone healing process between the allograft and the native bone when compared to the allograft alone group. Finally, in Chapter 6, the deployable effect of the SMP scaffolds on the osteogenic differentiation capacity of human adipose-derived stem cells was evaluated. Successful osteogenic differentiation was demonstrated by the assessments of mineral deposition, alkaline phosphatase activity, and gene expression; no statistical difference was found between the active scaffolds and the static scaffolds.;In this dissertation, programmable cytocompatible electrospun SMP scaffolds are developed and further employed to demonstrate their potential applications in cell mechanobiology and bone regeneration. In Chapter 7, conclusions and future directions are discussed and suggested for each chapter of this dissertation.
机译:传统上,组织工程支架是静态的物理结构,不适合模仿体内微环境的复杂动态行为。形状记忆聚合物(SMP)可以解决此限制。最近的工作已经实现了二维的细胞相容性SMP基质,其表面形貌可以被触发来控制细胞行为。为了使“智能”功能性组织工程支架进一步发展,本文的目的是开发一种可编程的细胞相容性SMP支架,并进一步研究SMP支架的潜在应用。为实现这一目标,在第2章中,SMP支架的合成和表征研究了一个含多面体低聚倍半硅氧烷(POSS)的聚酯基热塑性聚氨酯(TPU)系列,并探讨了己内酯含量和水增塑对TPU玻璃化转变温度的影响。在第3章中,使用静电纺丝技术开发了一种能够在细胞相容条件下改变形状和内部结构的可编程SMP支架。发现细胞形态-细胞骨架和核排列-由形状记忆驱动的支架形状和内部结构变化指导。此外,在支架结构改变之前和之后,细胞仍然保持活力并附着。;第4章至第6章的目的是探讨可编程细胞相容性SMP支架在骨再生医学中的潜在应用。在第四章中,评估了自我部署形状记忆聚合物固定装置(智能套筒)的生物力学可行性。使用小鼠股骨横向骨折模型将智能套筒的体外机械稳定性与髓内(IM)指甲进行了比较。智能套筒提供的扭转机械稳定性可与IM钉媲美。但智能套的弯曲稳定性明显低于IM钉。在第5章中,在体内小鼠临界尺寸缺损模型中研究了用作辅助稳定装置的智能套筒的生物学功能。 45°C盐水冲洗可触发智能套管的术中展开。我们发现,与单独同种异体移植组相比,智能套管的存在不会干扰同种异体移植物和天然骨之间的骨骼愈合过程。最后,在第6章中,评估了SMP支架对人脂肪干细胞成骨分化能力的可扩展作用。通过评估矿物质沉积,碱性磷酸酶活性和基因表达证明成功的成骨分化。活性支架与静态支架之间无统计学差异。本论文开发了可编程的细胞相容性电纺SMP支架,并进一步证明了其在细胞力学和骨再生中的潜在应用。在第七章中,对本论文的每一章进行了讨论和提出了建议。

著录项

  • 作者

    Tseng, Ling-Fang.;

  • 作者单位

    Syracuse University.;

  • 授予单位 Syracuse University.;
  • 学科 Biomedical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 239 p.
  • 总页数 239
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号