首页> 外文学位 >Quantum Transport in Graphene Nanotransistors.
【24h】

Quantum Transport in Graphene Nanotransistors.

机译:石墨烯纳米晶体管中的量子传输。

获取原文
获取原文并翻译 | 示例

摘要

Over the past decade, interest in using graphene in condensed-matter physics and materials science applications has exploded, owing to its unique electrical properties. Narrow strips of graphene, called graphene nanoribbons, also display exotic behavior. A nanoribbon's edge geometry determines its electronic transport properties, and the rich behavior of conductance of nanoribbons in response to external potentials makes them ideal for use within transistors.;In this thesis, we work towards creating an accurate model of graphene nanoribbon transistors, and we asses two possible applications which exploit their amazing potential. We begin by outlining the basic theoretical and computational framework for the model developed in this work. We then demonstrate the capability of graphene nanoribbon transistors, with nanopores, to electronically detect, characterize, and manipulate translocating DNA strands. Specifically, we explore the tunability of such devices, by examining the role of lattice geometry, such as a quantum point contact constriction, on their performance. We perform a demonstration of the ability to detect the passage of double and single-stranded DNA, through molecular dynamics simulations. The transistors presented are capable of sensing the helical shape of double-stranded DNA molecules, the unraveling of a DNA helix into a planar-zipper form, and the passage of individual nucleotides of a single strand of DNA through the nanopore. We outline a preliminary analysis on the proper design of a multilayer transistor stack to control both the electronic properties of the conducting membrane, as well as the motion of the DNA. Lastly, we present another type of nanoribbon device, an all-carbon spintronic transistor for use in cascaded logic circuits. A thorough analysis of the transport properties of zigzag nanoribbon transistors in magnetic fields, in addition to the design and construction of logic gate circuits containing these spintronic transistors, is presented.
机译:在过去的十年中,由于石墨烯具有独特的电性能,因此在凝聚态物理和材料科学应用中使用石墨烯的兴趣激增。窄带的石墨烯(称为石墨烯纳米带)也显示出奇异的行为。纳米带的边缘几何形状决定了其电子传输性能,并且纳米带的电导响应外部电势的丰富行为使其成为在晶体管内使用的理想选择。在本论文中,我们致力于创建石墨烯纳米带晶体管的精确模型,并且我们评估两个可能发挥其惊人潜力的应用程序。我们首先概述了这项工作中开发的模型的基本理论和计算框架。然后,我们展示了具有纳米孔的石墨烯纳米带晶体管的能力,能够以电子方式检测,表征和操纵易位的DNA链。具体而言,我们通过检查晶格几何形状(例如量子点接触收缩)对其性能的作用来探索此类器件的可调性。我们通过分子动力学模拟证明了检测双链和单链DNA通道的能力。所展示的晶体管能够感应双链DNA分子的螺旋形状,将DNA螺旋解开成平面拉链形式,以及单条DNA的单个核苷酸通过纳米孔。我们概述了对多层晶体管堆栈的正确设计进行的初步分析,以控制导电膜的电子特性以及DNA的运动。最后,我们介绍了另一种类型的纳米带器件,一种用于级联逻辑电路的全碳自旋电子晶体管。除了包含这些自旋电子晶体管的逻辑门电路的设计和构造外,还对之字形纳米带晶体管在磁场中的传输特性进行了全面分析。

著录项

  • 作者

    Girdhar, Anuj.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Condensed matter physics.;Nanoscience.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 123 p.
  • 总页数 123
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号