首页> 外文学位 >Mechanisms of membrane remodeling by peripheral proteins and divalent cations.
【24h】

Mechanisms of membrane remodeling by peripheral proteins and divalent cations.

机译:外围蛋白质和二价阳离子对膜进行重塑的机制。

获取原文
获取原文并翻译 | 示例

摘要

Biological membranes undergo constant shape remodeling involving the formation of highly curved structures. As one of the most extensively studied membrane remodeling events, endocytosis is a ubiquitous eukaryotic membrane budding, vesiculation, and internalization process fulfilling numerous roles including compensation of membrane area increase after bursts of exocytosis. There are multiple independent endocytic pathways which differ by their speed as well as the proteins that are involved in. Bin/Amphiphysin/Rvs (BAR) domain proteins, such as endophilin, are responsible for sensing or generating membrane curvature in multiple endocytic pathways. In this dissertation, I elucidate the mechanisms of membrane remodeling through in vitro experimental studies with synthetic lipid bilayers.;Firstly, I investigated the binding and assembly of endophilin on planar membranes. Endophilin was found to be attracted to the membrane through electrostatic forces and to subsequently oligomerize on the membrane with the help of the protein's N-terminal helices. Next, I studied the mechanisms that govern membrane shape transitions induced by BAR domain proteins. The initiation of membrane curvature occurs at well-defined membrane tensions and protein surface densities. Importantly, the membrane budding and tubulation initiated by membrane tension reduction provides a mechanistic explanation for high speed endocytic pathways. The experimentally determined membrane shape stability diagram shows remarkable consistency with a three-parameter curvature instability model. Comparing different BAR domain proteins, the ability of three BAR domain proteins to generate high membrane curvature increases significantly from endophilin to amphiphysin, and to SNX9. The protein-protein attraction strength was identified as one of the most important factors that leads to the dramatic difference among these structurally similar proteins.;Furthermore, I examined membrane interactions of alpha-synuclein, an intrinsically disordered protein whose aggregation is a hallmark of Parkinson's disease. The binding of alpha-synuclein monomers was found to linearly expand the membrane area before the protein is able to induce membrane curvature. The area expansion is achieved by thinning of the bilayer. As I experimentally demonstrate, these features make alpha-synuclein a reporter of membrane tension as well as a promoter for endocytosis.;Finally, I found that Ca2+ ions can induce membrane invaginations through the clustering of charged lipids, albeit less efficiently than BAR domain proteins. As I will discuss, this suggests an intriguing role of Ca 2+ ions in the evolution of life.
机译:生物膜经历恒定的形状重塑,涉及高度弯曲结构的形成。内吞作用是最广泛研究的膜重塑事件之一,是一种遍在的真核膜出芽,囊泡形成和内在化过程,可完成许多作用,包括补偿胞吐作用爆发后膜面积增加。有多个独立的内吞途径,其速度以及所涉及的蛋白质各不相同。Bin / Amphiphysin / Rvs(BAR)域蛋白(例如内啡肽)负责感测或产生多个内吞途径中的膜曲率。本文通过合成脂质双层的体外实验研究阐明了膜重塑的机制。首先,我研究了内吞蛋白在平面膜上的结合和组装。发现内皮蛋白通过静电力被吸引到膜上,随后借助蛋白质的N端螺旋在膜上寡聚。接下来,我研究了控制BAR结构域蛋白诱导的膜形状转变的机制。膜曲率的起始发生在明确定义的膜张力和蛋白质表面密度上。重要的是,由膜张力降低引起的膜出芽和导管形成为高速内吞途径提供了机械学解释。实验确定的膜形状稳定性图显示了与三参数曲率不稳定性模型的显着一致性。比较不同的BAR结构域蛋白,三种BAR结构域蛋白产生高膜曲率的能力从内啡肽到两亲物,再到SNX9都显着增加。蛋白质-蛋白质的吸引力被认为是导致这些结构相似的蛋白质之间出现巨大差异的最重要因素之一。此外,我检查了α-突触核蛋白的膜相互作用,α-突触核蛋白是一种内在无序的蛋白质,其聚集是帕金森氏症的标志。疾病。发现在蛋白质能够诱导膜曲率之前,α-突触核蛋白单体的结合线性地扩大了膜面积。通过使双层变薄来实现面积扩展。正如我实验证明的那样,这些特征使α-突触核蛋白成为膜张力的报告者以及内吞作用的启动子。最后,我发现Ca2 +离子可以通过带电脂质的聚集诱导膜的内陷,尽管效率不如BAR域蛋白。 。正如我将要讨论的,这暗示了Ca 2+离子在生命进化中的有趣作用。

著录项

  • 作者

    Shi, Zheng.;

  • 作者单位

    University of Pennsylvania.;

  • 授予单位 University of Pennsylvania.;
  • 学科 Chemistry.;Biophysics.;Physical chemistry.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 269 p.
  • 总页数 269
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号