首页> 外文学位 >Nanomagnet dynamics with magnetostatic and magnetoelastic interelement coupling.
【24h】

Nanomagnet dynamics with magnetostatic and magnetoelastic interelement coupling.

机译:具有静磁和磁弹性相互作用的纳米磁体动力学。

获取原文
获取原文并翻译 | 示例

摘要

Densely packed nanomagnet arrays are intensely investigated as the basis of spintronic devices as well as for understanding the fundamental physics of the magnetic spins in confined structures. As nanomagnet devices reduce their dimensions to the nanometer scale, their behavior is critically modified by numerous factors such as the finite size, shape, interfacial effects, fabrication defects, and interelement coupling. Among them, this thesis specifically addresses two factors controlling the interelement coupling.;First, we discuss dipolar coupling between nanomagnets with a novel dynamic separation approach. By probing densely packed arrays of nickel elliptic disks and distinguishing signals in the frequency domain, individual subgroups of nanomagnets are characterized beyond the diffraction-limited spatial resolution. The technique is applied to nanomagnet arrays consisting of nickel elliptic disks with different orientations. Supplemented with micromagnetic simulations, the effect of the dipolar coupling on a specific nanomagnet subgroup is identified. The second part investigates the magnetization dynamics magnetoelastically coupled with surface acoustic waves (SAWs). In nanopatterned periodic arrays, magnetization precession and SAWs are simultaneously excited by a pump laser pulse. We show for the first time that the magnetization response is indeed coupled to the SAWs in nanomagnet arrays and the spin wave spectra are distinctly altered from the unperturbed ones, showing pinning and enhancement of the magnetization precession at the SAW frequencies. Taking the magnetoelastic effect into account, a newly developed simulation procedure demonstrates excellent reproduction of the measurements. Extension modules for OOMMF micromagnetic simulation framework have been developed to offer general magnetoelastic modeling capability and are now publically available. Utilizing these experimental and modeling techniques, we present a novel experimental method for characterizing the damping parameter of nanostructured magnets. The linewidth of the pinning of the magnetization precession is directly connected with the Gilbert magnetization damping parameter and is utilized as an accurate measure for its experimental estimation, avoiding usual issues associated with the time-domain analysis. The new method enables accurate characterization of the damping parameter of nanopatterned magnets, governing important spintronic device characteristics such as threshold current density in spin transfer torque magnetic random access memories and transition jitter in heat-assisted magnetic recording.
机译:密集包装的纳米磁铁阵列作为自旋电子器件的基础以及对理解受限结构中的磁性自旋的基本物理学的研究得到了深入研究。随着纳米磁体装置将其尺寸减小至纳米级,其行为受到许多因素的严格修改,例如有限的尺寸,形状,界面效应,制造缺陷和元素间耦合。其中,本论文专门针对两个因素进行了元素间耦合的控制。首先,我们用一种新颖的动态分离方法讨论了纳米磁体之间的偶极耦合。通过探测镍椭圆形磁盘的密集阵列并在频域中区分信号,纳米磁体的各个子组的特征超出了衍射极限的空间分辨率。该技术应用于由不同方向的镍椭圆形磁盘组成的纳米磁铁阵列。辅以微磁模拟,可以确定偶极耦合对特定纳米磁体亚组的影响。第二部分研究了与表面声波(SAW)磁弹性耦合的磁化动力学。在纳米图案周期阵列中,泵浦激光脉冲同时激发磁化进动和声表面波。我们首次表明,磁化响应确实与纳米磁体阵列中的声表面波耦合,并且自旋波谱与未受扰动的波谱明显不同,显示出在声表面波频率下磁化进动的固定和增强。考虑到磁弹性效应,新开发的仿真程序证明了测量值的出色再现性。已开发出用于OOMMF微磁仿真框架的扩展模块,以提供常规的磁弹性建模功能,并且现已公开提供。利用这些实验和建模技术,我们提出了表征纳米结构磁体阻尼参数的新型实验方法。磁化进动钉扎的线宽与吉尔伯特磁化阻尼参数直接相关,并用作其实验估算的准确方法,避免了与时域分析相关的常见问题。这种新方法能够精确表征纳米图案磁铁的阻尼参数,从而控制着重要的自旋电子器件特性,例如自旋传递扭矩磁性随机存取存储器中的阈值电流密度以及热辅助磁记录中的跃变抖动。

著录项

  • 作者

    Yahagi, Yu.;

  • 作者单位

    University of California, Santa Cruz.;

  • 授予单位 University of California, Santa Cruz.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 211 p.
  • 总页数 211
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号