首页> 外文学位 >Peatland biogeochemistry and plant productivity responses to field-based hydrological and temperature simulations of climate change.
【24h】

Peatland biogeochemistry and plant productivity responses to field-based hydrological and temperature simulations of climate change.

机译:泥炭地生物地球化学和植物生产力对基于现场的气候变化水文和温度模拟的反应。

获取原文
获取原文并翻译 | 示例

摘要

Northern peatlands have accumulated approximately one third of all soil carbon (C) and therefore play an important role in the global C cycle. Besides the C sink function, peatlands are one of the largest biological sources of atmospheric methane (CH4) and represent approximately 10% of global soil nitrogen (N) stocks. These ecosystems are present at latitudes that are predicted to be highly sensitive to climate change that will likely result in deeper water table positions. The reduction in soil moisture may increase peat decomposition rates and consequently affect nutrient dynamics. While attempts have been made to assess the impact of climate change on peatland C gas exchange and nutrient dynamics, controlled field experimentation remains limited. Therefore, the objectives of this thesis were to estimate the responses of peatland carbon dioxide (CO2) and CH4 flux, nutrient dynamics, and plant productivity to a recent- and a ten-year old drainage, and a warming treatment induced by opentop chambers, across the peatland's hummock-hollow microtopography. The study was carried out at a dry continental treed bog in boreal Alberta during 2011-2013.;Water level drawdown in the longer-term resulted in shifts in biomass coverage and plant community composition between the microforms. The moss biomass was replaced by vascular plant biomass (mostly woody shrubs) at hummocks, and by lichen biomass at hollows. The shift in dominant vegetation was reflected in CO2 fluxes; the longer-term drained hummocks were the largest sink of CO2 while hollows at the same site were the largest sources. While the short- and longer-term drained sites were net sources of CO 2, the warming treatment converted the longerterm drained site to a sink of CO2-C. Water table drawdown greatly reduced CH4 flux at both hummocks and hollows, and the reduction increased with time. The warming treatment increased emissions of CH4 at hollows and increased consumption of CH4 at hummocks. The extractable and available nutrient pools in the peat soil increased with deepening of water level, and over time. The water level driven dynamics of peat nutrient pools were reflected in the vegetation C:N ratio. The warming treatment increased nutrient pools more at hummocks than at hollows and the impact increased with time. Based on these results, I suggest that, models of peatland development need to include C and nutrient cycling links to moisture and temperature parameters to better predict plant productivity and C exchange under changing climatic conditions.
机译:北部泥炭地已积累了全部土壤碳(C)的三分之一,因此在全球碳循环中起着重要作用。除碳汇功能外,泥炭地是大气中甲烷(CH4)的最大生物来源之一,约占全球土壤氮(N)储量的10%。这些生态系统存在于预计对气候变化高度敏感的纬度,这可能会导致地下水位更深。土壤水分的减少可能会增加泥炭的分解速度,从而影响养分动态。尽管已尝试评估气候变化对泥炭地C气体交换和养分动态的影响,但受控田间试验仍然很有限。因此,本论文的目的是评估泥炭地二氧化碳(CO2)和CH4的通量,养分动态和植物生产力对最近和十年使用的排水系统以及开顶室引起的变暖处理的响应,穿过泥炭地的山岗型空心微地形。该研究是在2011-2013年期间在亚伯达省北部的一个干燥的大陆树木沼泽中进行的;长期而言,水位下降导致微形态之间生物量覆盖率和植物群落组成发生变化。苔藓生物量在山岗处被维管植物生物量(主要是木本灌木)所取代,而在空心处则被地衣生物量所替代。优势植被的变化反映在CO2通量中。长期排水的山岗是最大的CO2汇,而同一地点的空洞是最大的二氧化碳源。虽然短期和长期的排放位点是CO 2的净来源,但升温处理将长期排放的位点转化为CO 2 -C的汇。地下水位的下降大大降低了山岗和坑洼处的CH4通量,并且随着时间的增加而降低。加热处理增加了凹陷处CH4的排放并增加了山丘上CH4的消耗。随着水位的升高,泥炭土中可提取和可用的养分池随着时间的推移而增加。泥炭养分比反映了泥炭养分池的水位驱动动力学。加温处理增加了在山岗上的养分库,而不是增加了凹陷处的养分库,而且影响随着时间而增加。基于这些结果,我建议,泥炭地发展模型需要包括碳和养分循环与水分和温度参数的链接,以更好地预测植物产量和气候变化条件下的碳交换。

著录项

  • 作者

    Munir, Tariq Muhammad.;

  • 作者单位

    University of Calgary (Canada).;

  • 授予单位 University of Calgary (Canada).;
  • 学科 Forestry.;Hydrologic sciences.;Biogeochemistry.;Climate change.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 222 p.
  • 总页数 222
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号