首页> 外文学位 >Cationic polymers developed for alkaline fuel cell applications.
【24h】

Cationic polymers developed for alkaline fuel cell applications.

机译:为碱性燃料电池应用开发的阳离子聚合物。

获取原文
获取原文并翻译 | 示例

摘要

Alkaline fuel cells (AFCs) recently have gained renewed interest because of their facile electrode reaction kinetics, reduced fuel crossover and better water management compared to their protonic fuel cell counterpart. The emerging anionic exchange membrane fuel cell (AEMFC) adopts cationic group-functionalized polymers as the solid electrolyte instead of liquid potassium hydroxide or sodium hydroxide used in the traditional AFC, avoiding leakage problems, bicarbonate and carbonate salt induced electrode degradation issues that accompany liquid electrolytes. The polymer electrolyte applied in fuel cells should have good mechanical properties as well as high thermal and chemical stabilities, considering the basic, humid and elevated temperature operating conditions and the constant start-ups and shutdowns in fuel cell operation.;The chemical stability of guanidinium ion under an alkaline environment was studied in this research with the aim of using guanidinium ion in alkaline exchange membranes. The high pKa value (~13) of protonated quanidinium suggests a high dissociation of hydroxide ions from a hexa-alkylated guanadinium resulting in a high hydroxide conductivity of a functionalized polymer electrolyte. Model guanidinium compounds were synthesized to study the alkaline stability under different temperatures.;In order to form membranes with ion conducting channels, block copolymers can be designed that contain a hydrophilic cationic functional block separated from a hydrophobic block. This type of material can undergo microphase separation and form continuous ion conductive channels with the mechanical properties determined by the hydrophobic block material. In the present research, novel diblock copolymers were designed to combine an aromatic polymer block with a functionalized styrenic polymer block, aiming for combined mechanical and chemical merits from the good film forming, thermally and chemically stable poly(2,6-dimethyl-1,4-phenylene oxide) block (PPO) and the hydrophilic conductive poly(vinylbenzyltrimethylammonium) (PVBTMA) block. A poly(vinylbenzyl chloride) (PVBC) block was grown from the end of a PPO block through nitroxide mediated polymerization. The final quaternized PPO-b-PVBTMA film was obtained through hot pressing PPO-b-PVBC powder into films, followed by quaternizing in aqueous trimethylamine solution. Phase separation was indicated for the PPO-b-PVBC polymers based on the evidence of two Tgs from differential scanning calorimetry analysis. The PPO-b-PVBTMA membranes exhibited hydroxide conductivities as high as 166 +/- 5 mS/cm at 60 °C under fully hydrated conditions. Comparing to the reported anionic exchange membranes, PPO-b-PVBTMA membranes showed promising conductivity with suppressed water uptake.;In a similar design to the PPO-b-PVBTMA membranes, triblock copolymers were synthesized through NMP with polysulfone as the center block and PVBC as the outer blocks. The PVBC blocks were quaternized by Menshutkin reaction to produce PVBTMA blocks. PPO and polysulfone are both well known engineering polymers that function as the hydrophobic domains in these membranes, providing mechanical support, while the PVBTMA block(s) form hydrophilic domains to transport anions. Diblock copolymers and triblock copolymers with different weight percentage of PVBTMA block were synthesized and characterized by electrochemical impedance spectroscopy to study the effect of temperature, different counter ions, ion exchange capacity (IEC) and water uptake on ionic conductivity.
机译:碱性燃料电池(AFC)与质子燃料电池相比,因其易用的电极反应动力学,减少的燃料穿越和更好的水管理而引起了人们的新兴趣。新兴的阴离子交换膜燃料电池(AEMFC)采用阳离子基团官能化的聚合物作为固体电解质,而不是传统AFC中使用的液态氢氧化钾或氢氧化钠,避免了泄漏问题,碳酸氢盐和碳酸盐引起的电极降解问题(伴随液态电解质) 。考虑到基本,潮湿和高温运行条件以及燃料电池运行中的持续启动和关闭,应用于燃料电池的聚合物电解质应具有良好的机械性能以及较高的热稳定性和化学稳定性。胍的化学稳定性本研究以在碱性交换膜中使用胍盐离子为研究对象,研究了碱性条件下的离子。质子化的idi鎓的高pKa值(〜13)表明氢氧根离子从六烷基化的胍鎓中高度解离,从而导致官能化聚合物电解质的氢氧化物电导率较高。合成模型胍化合物以研究在不同温度下的碱稳定性。为了形成具有离子传导通道的膜,可以设计嵌段共聚物,该共聚物包含与疏水嵌段分开的亲水性阳离子官能团。这种类型的材料可以进行微相分离,并形成连续的离子导电通道,其机械性能由疏水性嵌段材料决定。在本研究中,设计了新颖的二嵌段共聚物,将芳族聚合物嵌段与官能化苯乙烯聚合物嵌段结合在一起,旨在从良好的成膜性,热和化学稳定性的聚(2,6-二甲基-1, 4-苯醚)嵌段(PPO)和亲水性导电聚(乙烯基苄基三甲基铵)(PVBTMA)嵌段。聚(乙烯基苄基氯)(PVBC)嵌段是从PPO嵌段的末端通过一氧化氮介导的聚合反应而生长的。最终季铵化的PPO-b-PVBTMA膜是通过将PPO-b-PVBC热压成膜,然后在三甲胺水溶液中进行季铵化而获得的。根据差示扫描量热法分析得到的两个Tg的证据,表明了PPO-b-PVBC聚合物的相分离。在完全水合条件下,PPO-b-PVBTMA膜在60°C下的氢氧化物电导率高达166 +/- 5 mS / cm。与报道的阴离子交换膜相比,PPO-b-PVBTMA膜显示出令人鼓舞的电导率,并且抑制了水的吸收。在与PPO-b-PVBTMA膜类似的设计中,通过以聚砜为中心嵌段的NMP和PVBC合成了三嵌段共聚物。作为外部块。通过Menshutkin反应将PVBC嵌段季铵化以生产PVBTMA嵌段。 PPO和聚砜都是众所周知的工程聚合物,它们在这些膜中起疏水结构域的作用,提供机械支撑,而PVBTMA嵌段形成亲水性结构域以运输阴离子。合成了不同重量百分比的PVBTMA嵌段的二嵌段共聚物和三嵌段共聚物,并通过电化学阻抗谱进行了表征,以研究温度,不同的抗衡离子,离子交换容量(IEC)和吸水率对离子电导率的影响。

著录项

  • 作者

    Yang, Yating.;

  • 作者单位

    Colorado School of Mines.;

  • 授予单位 Colorado School of Mines.;
  • 学科 Physical chemistry.;Polymer chemistry.;Materials science.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号