首页> 外文学位 >Modeling the response of normal and ischemic cardiac tissue to electrical stimulation.
【24h】

Modeling the response of normal and ischemic cardiac tissue to electrical stimulation.

机译:模拟正常和缺血性心脏组织对电刺激的反应。

获取原文
获取原文并翻译 | 示例

摘要

Heart disease, the leading cause of death worldwide, is often caused by ventricular fibrillation. A common treatment for this lethal arrhythmia is defibrillation: a strong electrical shock that resets the heart to its normal rhythm. To design better defibrillators, we need a better understanding of both fibrillation and defibrillation. Fundamental mysteries remain regarding the mechanism of how the heart responds to a shock, particularly anodal shocks and the resultant hyperpolarization. Virtual anodes play critical roles in defibrillation, and one cannot build better defibrillators until these mechanisms are understood.;We are using mathematical modeling to numerically simulate observed phenomena, and are exploring fundamental mechanisms responsible for the heart's electrical behavior. Such simulations clarify mechanisms and identify key parameters.;We investigate how systolic tissue responds to an anodal shock and how refractory tissue reacts to hyperpolarization by studying the dip in the anodal strength-interval curve. This dip is due to electrotonic interaction between regions of depolarization and hyperpolarization following a shock. The dominance of the electrotonic mechanism over calcium interactions implies the importance of the spatial distribution of virtual electrodes.;We also investigate the response of localized ischemic tissue to an anodal shock by modeling a regional elevation of extracellular potassium concentration. This heterogeneity leads to action potential instability, 2:1 conduction block (alternans), and reflection-like reentry at the boarder of the normal and ischemic regions. This kind of reflection (reentry) occurs due to the delay between proximal and distal segments to re-excite the proximal segment.;Our numerical simulations are based on the bidomain model, the state-of-the-art mathematical description of how cardiac tissue responds to shocks. The dynamic LuoRudy model describes the active properties of the membrane. To model ischemia, the Luo-Rudy model is modified by adding ischemic-related ion currents and concentrations to mimic conditions during the initial phase of ischemia. The stimulus is applied through a unipolar electrode that induces a complicated spatial distribution of transmembrane potential, including adjacent regions of depolarization and hyperpolarization.;This research is significant because it uncovers basic properties of excitation that are fundamental for understanding cardiac pacing and defibrillation.
机译:心脏病是全球主要的死亡原因,通常是由心室纤颤引起的。对于这种致命性心律失常的常见治疗方法是除颤:强烈的电击会使心脏恢复正常的节律。为了设计更好的除颤器,我们需要对除颤和除颤有更好的了解。关于心脏如何应对电击(尤其是阳极电击和由此引起的超极化)的机制,仍然存在根本的谜团。虚拟阳极在除颤过程中起着至关重要的作用,除非了解了这些机理,否则无法制造出更好的除颤器。我们正在使用数学模型对观察到的现象进行数值模拟,并正在探索负责心脏电行为的基本机理。这样的模拟阐明了机理并确定了关键参数。我们通过研究阳极强度-时间间隔曲线的下降来研究收缩组织对阳极休克的反应以及难治性组织对超极化的反应。这种下降是由于电击后去极化和超极化区域之间的电子相互作用。电渗机制对钙相互作用的支配性意味着虚拟电极空间分布的重要性。我们还通过模拟细胞外钾浓度的局部升高来研究局部缺血组织对阳极电击的反应。这种异质性导致动作电位不稳定,2:1传导阻滞(alternans)以及正常和缺血区域边界的反射状折返。这种反射(折返)是由于近端和远端段之间的延迟而使近端段重新激发而发生的;我们的数值模拟基于双域模型,这是对心脏组织如何进行最新的数学描述应对冲击。动态的LuoRudy模型描述了膜的活性特性。为了建模局部缺血,通过在局部缺血的初始阶段将局部缺血相关的离子电流和浓度添加到模拟条件中来修改Luo-Rudy模型。刺激是通过单极电极施加的,该电极引起跨膜电位的复杂空间分布,包括去极化和超极化的相邻区域。;这项研究意义重大,因为它揭示了对理解心脏起搏和除颤至关重要的基本刺激特性。

著录项

  • 作者

    Kandel, Sunil Mani.;

  • 作者单位

    Oakland University.;

  • 授予单位 Oakland University.;
  • 学科 Physics.;Biomedical engineering.;Physiology.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 333 p.
  • 总页数 333
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号