首页> 外文学位 >Metamorphic and Structural Evolution and Provenance of the Blue Ridge Area, Fremont County, Colorado.
【24h】

Metamorphic and Structural Evolution and Provenance of the Blue Ridge Area, Fremont County, Colorado.

机译:科罗拉多州弗里蒙特县蓝岭地区的变质构造演化和物源。

获取原文
获取原文并翻译 | 示例

摘要

New field studies combined with U-Pb zircon/apatite geochronology, thermodynamic equilibrium modeling, whole-rock/rare earth element geochemistry, heavy mineral comparison, and petrographic analysis yield new insights into the age and timing of deposition, deformation, metamorphism, and the provenance and boundary relationships of exposed Precambrian metasedimentary and associated granitic and pegmatitic rock in the Blue Ridge area, Fremont County, Colorado. The Blue Ridge area is comprised of alternating layers of quartzite, schist, and quartzitic-gneiss, and is in contact with ~ 1.7 Ga granitic basement at both its northern and southern boundary, with ~1.4 Ga concordant and discordant pegmatite dikes exposed throughout. Previous research has used the boundary relationships and U-Pb crystallization and detrital zircon ages to propose two hypotheses: 1) The northern boundary is depositional in nature and represents original sedimentation of quartz-rich sediment sourced from the adjacent granitic basement onto a weathered granitic surface after a period of very efficient and rapid weathering at 1.7 Ga due to altered ocean chemistry (Jones et al. 2009, Medaris et al. 2003, Cox et al. 2002); and; 2) The major deformational and tectonic events that are responsible for the present configuration at Blue Ridge occurred during emplacement of granitic basement at 1.7 Ga (Mai 2002) and/or during inboard deformation associated with the ca. 1.66 -- 1.60 Ga Mazatzal orogeny (Jones et al. 2009). My field observations coupled with geochronologic and geochemical data acquired from previously undocumented structural marker units infer that an episode of deformation occurred at ~1.4 Ga during pegmatite emplacement, and that an additional pulse of igneous activity occurred at ~1.1 Ga associated with emplacement of the Pike's Peak batholith. The newly identified structural marker units include syndeformational pegmatite dikes located at both the northern and southern boundary, an amphibole-bearing leucosome infiltrating quartzite and augen-gneiss along the southern boundary, and the identification of granodiorite and an associated cross-cutting diabase dike that appear to cross-cut existing metasedimentary units.;The presence of attenuated and ductiley deformed pegmatite dikes found at both boundaries, combined with published U-Pb zircon ages ca. 1436 -- 1431 Ma from pegmatites at Blue Ridge (Jones et al., 2009), show that movement and deformation occurred at this time. U-Pb geochronologic data from the amphibole-bearing leucosome define discordia arrays with lower intercept ages of 1097 +/- 93 Ma and 1109 +/- 43 Ma for zircon and 1185 +/- 39 Ma for apatite. The granodiorite yielded little to no zircon, but had a U-Pb apatite lower intercept age of 1016 +/- 65 Ma. Sm/Nd isotopic data of the diabase dike revealed a depleted mantle model age of 1.2 Ga. Field observations coupled with geochemical and petrographic analyses from the northern boundary show that the contact of granite with metasedimentary rocks was initially depositional in nature, but subsequently deformed as a shear zone ca. 1.4 Ga. Rare earth element (REE) patterns from the northern granite and adjacent metasedimentary rocks are very similar, leading to the interpretation of the granite being the source for the metasediments. Heavy mineral comparisons across the northern boundary are less clear, but apatite/zircon ratios within the granite and basal quartz pebble conglomerate (QPC) of the metasedimentary package display moderate similarities. Additionally, new pressure-temperature (P-T) thermodynamic modeling based on schists and quartz-schists combined with garnet-biotite thermometry was used to quantify that amphibolite-grade metamorphism reached a maximum pressure of 5.2 kb and a maximum temperature of 635 °C.
机译:新的野外研究与U-Pb锆石/磷灰石地球年代学,热力学平衡模型,全岩石/稀土元素地球化学,重矿物比较和岩石学分析相结合,对沉积,变形,变质作用的年龄和时间有了新的认识。科罗拉多州弗里蒙特县蓝岭地区暴露的前寒武纪准沉积和相关的花岗岩和岩溶岩的物源和边界关系。蓝岭地区由石英岩,片岩和片晶片麻岩的交替层组成,并且在其北部和南部边界处均与〜1.7 Ga花岗岩基底相接触,整个处都暴露有〜1.4 Ga一致和不协调的伟晶岩堤。先前的研究使用边界关系,U-Pb结晶和碎屑锆石年龄提出了两个假设:1)北边界本质上是沉积性的,代表了来自邻近花岗岩基底的富含石英的沉积物在风化花岗岩表面上的原始沉积。在由于海洋化学改变而在1.7 Ga下进行了非常高效和快速的风化之后(Jones等2009,Medaris等2003,Cox等2002);和; 2)造成蓝脊当前构造的主要变形和构造事件发生在1.7 Ga花岗岩基底的置入过程中(Mai 2002)和/或与ca. Ga Mazatzal造山带1.66-1.60(Jones等人2009)。我的野外观察加上从以前未记录的结构标记物单元获得的地质年代和地球化学数据,推断在伟晶岩安置期间约1.4 Ga发生了变形事件,并且在约1.1 Ga发生了与派克岩的安置有关的额外火成活动脉冲。峰顶岩床。新近确定的结构标志物单元包括位于北部和南部边界的同形伟晶岩堤,沿南部边界的含角闪石的渗透性石英岩和奥氏片麻片岩,以及出现的花岗闪长岩和相关的横切辉绿岩堤防的识别。在两个边界都发现了衰减的和韧性变形的伟晶岩堤坝,并结合了已发表的U-Pb锆石年龄。蓝岭伟晶岩的1436年至1431年Ma(Jones等人,2009年)表明,此时发生了运动和变形。来自带有闪石的白质体的U-Pb年代学数据定义了迪斯科舞厅阵列,锆石的截距年龄较低,分别为1097 +/- 93 Ma和1109 +/- 43 Ma,磷灰石的截距年龄为1185 +/- 39 Ma。该花岗闪长石几乎没有生成锆石,但其U-Pb磷灰石的截距年龄较低,为1016 +/- 65 Ma。辉绿岩堤的Sm / Nd同位素数据显示,地幔模型的年龄为1.2 Ga。野外观测加上北边界的地球化学和岩石学分析表明,花岗岩与准沉积岩的接触最初是自然沉积的,但随后变形为剪切带1.4 Ga。北部花岗岩和邻近的准沉积岩中的稀土元素(REE)模式非常相似,这导致对花岗岩为准沉积物的解释。北部边界的重矿物比较尚不清楚,但是在变质沉积层中花岗岩和基底石英卵石砾岩(QPC)中的磷灰石/锆石比率显示出中等程度的相似性。此外,新的基于片岩和石英片岩的压力-温度(P-T)热力学模型与石榴石-黑云母测温法相结合,用于定量确定闪石级变质岩的最大压力为5.2 kb,最高温度为635°C。

著录项

  • 作者

    Berndt, Tyson Richard.;

  • 作者单位

    University of Kansas.;

  • 授予单位 University of Kansas.;
  • 学科 Geology.;Geochemistry.
  • 学位 M.S.
  • 年度 2015
  • 页码 352 p.
  • 总页数 352
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:52:38

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号