首页> 外文学位 >Lock Acquisition and Sensitivity Analysis of Advanced LIGO Interferometers.
【24h】

Lock Acquisition and Sensitivity Analysis of Advanced LIGO Interferometers.

机译:先进的LIGO干涉仪的锁获取和灵敏度分析。

获取原文
获取原文并翻译 | 示例

摘要

Laser interferometer gravitational wave observatory (LIGO) consists of two complex large-scale laser interferometers designed for direct detection of gravitational waves from distant astrophysical sources in the frequency range 10Hz - 5kHz. Direct detection of space-time ripples will support Einstein's general theory of relativity and provide invaluable information and new insight into physics of the Universe.;The initial phase of LIGO started in 2002, and since then data was collected during the six science runs. Instrument sensitivity improved from run to run due to the effort of commissioning team. Initial LIGO has reached designed sensitivity during the last science run, which ended in October 2010.;In parallel with commissioning and data analysis with the initial detector, LIGO group worked on research and development of the next generation of detectors. Major instrument upgrade from initial to advanced LIGO started in 2010 and lasted until 2014.;This thesis describes results of commissioning work done at the LIGO Livingston site from 2013 until 2015 in parallel with and after the installation of the instrument. This thesis also discusses new techniques and tools developed at the 40m prototype including adaptive filtering, estimation of quantization noise in digital filters and design of isolation kits for ground seismometers.;The first part of this thesis is devoted to the description of methods for bringing the interferometer into linear regime when collection of data becomes possible. States of longitudinal and angular controls of interferometer degrees of freedom during lock acquisition process and in low noise configuration are discussed in details.;Once interferometer is locked and transitioned to low noise regime, instrument produces astrophysics data that should be calibrated to units of meters or strain. The second part of this thesis describes online calibration technique set up in both observatories to monitor the quality of the collected data in real time. Sensitivity analysis was done to understand and eliminate noise sources of the instrument.;The coupling of noise sources to gravitational wave channel can be reduced if robust feedforward and optimal feedback control loops are implemented. Static and adaptive feedforward noise cancellation techniques applied to Advanced LIGO interferometers and tested at the 40m prototype are described in the last part of this thesis. Applications of optimal time domain feedback control techniques and estimators to aLIGO control loops are also discussed.;Commissioning work is still ongoing at the sites. First science run of advanced LIGO is planned for September 2015 and will last for 3-4 months. This run will be followed by a set of small instrument upgrades that will be installed on a time scale of few months. Second science run will start in spring 2016 and last for about six months. Since current sensitivity of advanced LIGO is already more than a factor of 3 higher compared to initial detectors and keeps improving on a monthly basis, the upcoming science runs have a good chance for the first direct detection of gravitational waves.
机译:激光干涉仪重力波天文台(LIGO)由两个复杂的大型激光干涉仪组成,旨在直接检测来自遥远天体源的10Hz-5kHz频率范围内的重力波。对时空脉动的直接检测将支持爱因斯坦的广义相对论,并提供宝贵的信息和对宇宙物理学的新见识。LIGO的初始阶段始于2002年,此后在六次科学运行中收集了数据。由于调试团队的努力,仪器灵敏度在每次运行中都得到了提高。最初的LIGO在截至2010年10月的最后一次科学运行中达到了设计灵敏度。与初始探测器的调试和数据分析同时,LIGO小组致力于下一代探测器的研发。从最初的LIGO到高级LIGO的重大仪器升级始于2010年,一直持续到2014年。本论文介绍了LIGO Livingston在2013年至2015年与仪器安装同时进行的调试工作的结果。本文还讨论了在40m原型机上开发的新技术和工具,包括自适应滤波,数字滤波器中量化噪声的估计以及用于地面地震仪的隔离套件的设计。当数据采集成为可能时,干涉仪进入线性状态。详细讨论了在锁定获取过程中以及在低噪声配置中干涉仪自由度的纵向和角度控制状态。一旦干涉仪被锁定并转换到低噪声状态,仪器将产生天体物理学数据,应将其校准为米或应变。本文的第二部分描述了两个天文台建立的在线校准技术,以实时监控收集到的数据的质量。进行了灵敏度分析,以了解和消除仪器的噪声源。如果实施鲁棒的前馈和最佳反馈控制环路,则可以减少噪声源与重力波通道的耦合。本文的最后部分介绍了应用于先进LIGO干涉仪的静态和自适应前馈噪声消除技术,并在40m原型机上进行了测试。还讨论了最佳时域反馈控制技术和估计器在aLIGO控制回路中的应用。现场调试工作仍在进行中。计划于2015年9月对先进的LIGO进行首次科学运行,历时3-4个月。在此之后,将进行一系列小型仪器升级,安装时间为几个月。第二次科学实验将于2016年春季开始,持续约六个月。由于先进的LIGO的当前灵敏度已经比初始探测器高出3倍以上,并且每月都在不断提高,因此即将进行的科学运行很有可能首次直接探测引力波。

著录项

  • 作者

    Martynov, Denis.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Physics.;Astrophysics.;Astronomy.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 214 p.
  • 总页数 214
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号