首页> 外文学位 >Understanding and Controlling Light Alkane Reactivity on Metal Oxides: Optimization Through Doping.
【24h】

Understanding and Controlling Light Alkane Reactivity on Metal Oxides: Optimization Through Doping.

机译:了解和控制轻质烷烃对金属氧化物的反应性:通过掺杂进行优化。

获取原文
获取原文并翻译 | 示例

摘要

Metal oxide catalysts have numerous industrial applications and have garnered research attention. Although oxides catalyze many important reactions, their yields to products are too low to be of economic value due to low conversion and/or low selectivity. For example, some oxides can catalyze the conversion of methane to intermediates or products that are liquefiable at yields no higher than 30%. With improved yield, such a process could help reduce the trillions of cubic feet of natural gas flared every year, saving billions of dollars and millions of tonnes of greenhouse gases. To this end, one goal of this work is to understand and improve the catalytic activity of oxides by substituting a small fraction of the cations of a "host oxide" with a different cation, a "dopant." This substitution disrupts chemical bonding at the surface of the host oxide, which can improve reactant and lattice oxygen activation where the reaction takes place. Another goal of this work is to combine catalysts with metal oxides reactants to improve thermodynamic limitations. Outstanding challenges for the study of doped metal oxide catalysts include (1) selection of dopants to ix synthesize within a host oxide and (2) understanding the nature of the surface of the doped oxide during reaction.;Herein, strongly coupled theoretical calculations and experimental techniques are employed to design, synthesize, characterize, and catalytically analyze doped oxide catalysts for the optimization of light alkane conversion processes. Density Functional Theory calculations are used to predict different energies believed to be involved in the reaction mechanism. These parameters offer valuable suggestions on which dopants may perform with highest yield and activity and why. Synthesis is accomplished using a combination of wet chemical techniques, suited specifically for the preparation of doped (rather than supported or mixed) metal oxide catalysts of high surface area and high reactivity. Characterization is paramount in any doped-oxide investigation to determine if the catalyst under reaction conditions is truly doped or merely small clusters of supported catalyst. With that goal, diffraction, X-ray, electron microscopies, infrared spectroscopy, and chemical probes are used to determine the nanoscopic nature of the catalysts. Additional novel measurement techniques, such as transient oxidation reaction spectroscopy, determined the nature of the active site's oxidation state.
机译:金属氧化物催化剂具有许多工业应用,并已引起研究关注。尽管氧化物催化许多重要的反应,但由于转化率低和/或选择性低,它们的产物收率仍然太低而没有经济价值。例如,某些氧化物可以催化甲烷转化为可液化的中间体或产物,产率不超过30%。通过提高产量,这样的过程可以帮助减少每年燃烧的数万亿立方英尺的天然气,从而节省数十亿美元和数百万吨的温室气体。为此,这项工作的一个目标是通过用一小部分“主体氧化物”的阳离子替换为另一种阳离子“掺杂剂”来理解和提高氧化物的催化活性。这种取代破坏了主体氧化物表面的化学键合,从而可以改善反应发生时的反应物和晶格氧活化。这项工作的另一个目标是将催化剂与金属氧化物反应物结合起来以改善热力学极限。研究掺杂金属氧化物催化剂面临的突出挑战包括(1)选择要在主体氧化物中合成的掺杂剂;(2)了解反应过程中掺杂氧化物表面的性质。技术用于设计,合成,表征和催化分析掺杂的氧化物催化剂,以优化轻烷烃转化工艺。密度泛函理论计算用于预测被认为与反应机理有关的不同能量。这些参数提供了有价值的建议,说明哪些掺杂剂可以以最高的产量和活性发挥作用,以及为什么。使用湿化学技术的组合来完成合成,该湿化学技术特别适合于制备高表面积和高反应性的掺杂(而非负载或混合)金属氧化物催化剂。在任何掺杂氧化物研究中,确定反应条件下的催化剂是真正掺杂的还是负载催化剂的小簇,表征都是至关重要的。为了这个目标,使用衍射,X射线,电子显微镜,红外光谱和化学探针来确定催化剂的纳米性质。其他新的测量技术,例如瞬态氧化反应光谱,确定了活性部位氧化态的性质。

著录项

  • 作者

    Derk, Alan Richard.;

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Chemical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 181 p.
  • 总页数 181
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号