首页> 外文学位 >Understanding the Fusion and Maturation of Tissue Engineered Linear Blood Vessels Using Magnetic Cellular Spheroids
【24h】

Understanding the Fusion and Maturation of Tissue Engineered Linear Blood Vessels Using Magnetic Cellular Spheroids

机译:使用磁性细胞球体了解组织工程线性血管的融合和成熟

获取原文
获取原文并翻译 | 示例

摘要

Cellular spheroids are attractive for tissue fabrication due to having precise control over cell and extracellular matrix (ECM) composition, the ability for upscaled production and repeatability, their three-dimensional nature and the fact that spheroids will produce their own ECM over time. A critical process in the fabrication of complex tissue structures with cellular spheroids is related to their fusion and maturation. Tissue fusion is a self-assembly process in which two or more distinct cell populations, or tissues, make contact and coalesce to form a single cohesive structure. Maturation of tissue engineered constructs involves developing the mechanical properties and ECM compositions that mimic native vasculature. However, the fusion and maturation of spheroids and tissues composed of spheroids over time is not clearly understood. Therefore, developing methods to understand and accelerate the fusion and maturation of tissues composed of spheroids will improve upon current techniques for tissue fabrication with spheroids. Here, the fusion and maturation of vascular tissues mediated by magnetic forces was modeled using Janus Magnetic Cellular Spheroids (JMCSs). JMCSs contain two distinct domains: cells and extracellular iron oxide magnetic nanoparticles (MNPs). This separation of cells and MNPs has no adverse effects on long-term viability or cellular phenotype, allowing for magnetic manipulation of spheroids for building larger tissues.;Here, spheroid composition was manipulated, by varying ECM and cell contents, in order to study the resulting effects on JMCS fusion mediated by magnetic forces. Next, the influence of iron oxide MNPs on ECM production in JMCSs was studied over time. Further, magnetic sheets composed of JMCSs were fabricated and their maturation mediated by cyclic longitudinal stretching using magnetic forces. The objective of this work was to determine the mechanisms associated with the fusion and maturation of JMCSs and tissues composed of JMCSs. The hypotheses driving this work were that spheroid composition dictates their fusion and that magnetic forces can be utilized to dynamically condition tissues composed of JMCSs for maturation.;Results demonstrated the critical importance of magnetic forces for promoting the fusion of JMCSs, when compared to JMCSs not exposed to magnetic forces. Further, results demonstrate the critical role of cell-cell and cell-ECM interactions for mediating cellular spheroid fusion over time. Results showed that the addition of iron oxide magnetic nanoparticles in JMCSs caused a significant increase in collagen production, when compared to no iron oxide controls. Quantitative results demonstrate that cyclic longitudinal stretching of tissue sheets mediated by magnetic forces increases the Young's modulus, enhances ECM production and induces collagen fiber alignment over 7 days, when compared to statically conditioned controls. These findings are expected to provide a strong theoretical and methodological foundation for the development of new tissue engineering technologies.
机译:细胞球状体由于对细胞和细胞外基质(ECM)成分的精确控制,扩大生产能力和可重复性,它们的三维性质以及球状体会随时间产生自己的ECM的事实而对组织制造具有吸引力。具有细胞球体的复杂组织结构的制造中的关键过程与其融合和成熟有关。组织融合是一种自组装过程,其中两个或多个不同的细胞群体或组织进行接触并合并以形成单个凝聚结构。组织工程化构建体的成熟涉及开发模仿天然脉管系统的机械性能和ECM组合物。然而,随着时间的流逝,球体和由球体组成的组织的融合和成熟还不清楚。因此,开发用于理解和加速由球状体组成的组织的融合和成熟的方法将在用于球状体的组织制造的当前技术上得到改进。在这里,使用Janus磁性细胞球体(JMCSs)对由磁力介导的血管组织融合和成熟进行了建模。 JMCS包含两个不同的域:细胞和细胞外氧化铁磁性纳米颗粒(MNP)。细胞和MNP的这种分离对长期生存力或细胞表型没有不利影响,允许对球形物质进行磁性操作以构建更大的组织。在这里,通过改变ECM和细胞含量来控制球形成分,以研究磁力介导的对JMCS融合的影响。接下来,随着时间的推移,研究了氧化铁MNP对JMCS中ECM生产的影响。此外,制造了由JMCS组成的磁性片,并利用磁力通过循环纵向拉伸来介导它们的成熟。这项工作的目的是确定与JMCS和由JMCS组成的组织融合和成熟有关的机制。推动这项工作的假设是球状体决定了它们的融合,并且可以利用磁力来动态调节由JMCS组成的组织以使其成熟。结果表明,与JMCS相比,磁力对于促进JMCS融合至关重要。暴露于磁力。此外,结果证明了细胞-细胞和细胞-ECM相互作用对于介导细胞球体融合的关键作用。结果表明,与无氧化铁对照相比,在JMCS中添加氧化铁磁性纳米颗粒会导致胶原蛋白的生产显着增加。定量结果表明,与静态调节的对照相比,磁力介导的组织薄片的周期性纵向拉伸在7天之内增加了杨氏模量,增强了ECM的产生并诱导了胶原纤维的排列。这些发现有望为新的组织工程技术的发展提供强大的理论和方法论基础。

著录项

  • 作者

    Olsen, Timothy R.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Biomedical engineering.;Developmental biology.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 176 p.
  • 总页数 176
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号