首页> 外文学位 >Shock Wave Response of in situ Iron-based Metallic Glass Matrix Composites
【24h】

Shock Wave Response of in situ Iron-based Metallic Glass Matrix Composites

机译:原位铁基金属玻璃基复合材料的冲击波响应

获取原文
获取原文并翻译 | 示例

摘要

Bulk metallic glasses (BMG) have recently garnered interest due to superior properties such as higher strength, toughness and hardness, arising out of the amorphous struc- ture of these metallic alloys, as compared to their crystalline counterparts. However, BMGs are brittle and fail catastrophically following their elastic limit, which severely restricts their use in structural applications. To offset their brittleness, studies of various combinations of hard nano/micro particles, in situ precipitated crystalline phases and fibers embedded within the BMG, exist in the literature. These resulting materials are known as metallic glass matrix composites. In this work, we study the high strain-rate response of two novel Fe-based metallic glass matrix composites, both of the same composition Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4, containing varying amounts of in situ crystalline phases, when subjected to shock compression. Shock response is determined by making velocity measurements using interferometry techniques such as the Velocity Interferometer System for Any Reflector (VISAR) and Photonic Doppler Velocimetry (PDV) at the rear free surface of BMG samples, which have been subjected to impact from a high-velocity projectile launched from a powder gun. Plate impact experiments have yielded repeatable results indicating a Hugoniot Elastic Limit (HEL) to be 12.5 GPa and 8 GPa respectively for the two composites. The former HEL result is higher than elastic limits for any BMG reported in the literature thus far. The effect of partial crystallization in the amorphous matrix of BMG on the observed shock response is fur- ther explored through a comparison of the results from both composites. It was found that the presence of products of devitrification, although small in volume fraction, plays a significant role in strengthening the material (as evidenced by its larger HEL) as well as lending it more ductility (from retaining shear strength beyond the HEL). This is likely a result of the high hardness and strength of devitrification products such as Fe23B6 as well as the arrest of shear bands by clusters of nanocrystallites. Therefore, it has been demonstrated that the extent of devitrification is an important adjustable parameter to tune the mechanical response of the material as desired.;In addition, the sensitivity of the fracture morphology of a Zr-based BMG Vitreloy 106 to strain rate is examined through a series of low-velocity impact experiments using a single-stage gas gun. Post-mortem microscopic examination of the fracture surfaces of the retrieved failed specimens was conducted. The dynamic fracture morphology for the Zr-BMG showed a clear strain-rate dependence in the form of various unique features at the micro-scale resulting from the occurrence of different fracture mechanisms at varying levels of loading rate.
机译:由于与这些金属合金的非晶态结构相比,这些金属合金的非晶态结构具有更高的性能,例如更高的强度,韧性和硬度,大块金属玻璃(BMG)引起了人们的关注。然而,BMG很脆,并且在其弹性极限之后发生灾难性的破坏,这严重限制了它们在结构应用中的使用。为了抵消它们的脆性,文献中对硬纳米/微粒,原位沉淀的结晶相和嵌入BMG中的纤维的各种组合进行了研究。这些所得材料称为金属玻璃基质复合材料。在这项工作中,我们研究了两种新颖的Fe基金属玻璃基复合材料的高应变速率响应,这两种成分均具有相同的成分Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4,其中包含不同量的原位结晶相,当受到冲击压缩时。震动响应是通过使用干涉技术进行速度测量来确定的,例如在受到高速冲击的BMG样品的后自由表面上,使用任何反射器的速度干涉仪系统(VISAR)和光子多普勒测速仪(PDV)进行测量从火药枪发射的弹丸。板冲击试验产生了可重复的结果,表明两种复合材料的Hugoniot弹性极限(HEL)分别为12.5 GPa和8 GPa。迄今为止,以前的HEL结果高于文献中报道的任何BMG的弹性极限。通过比较两种复合材料的结果,进一步探索了BMG无定形基体中部分结晶对观察到的冲击响应的影响。发现失透产物的存在,尽管体积分数较小,但在增强材料(由较大的HEL证明)以及赋予其更大的延展性(由于保持超过HEL的剪切强度)方面起着重要作用。这可能是由于失透产品(例如Fe23B6)的高硬度和强度以及纳米微晶簇阻止剪切带的结果。因此,已经证明失透程度是根据需要调节材料的机械响应的重要的可调节参数。;此外,检查了基于Zr的BMG Vitreloy 106的断裂形态对应变率的敏感性。通过使用单级气枪进行的一系列低速冲击实验。对取回的失效样品的断裂表面进行验尸显微镜检查。 Zr-BMG的动态断裂形态在微观尺度上表现出明显的应变速率依赖性,表现为各种独特特征,这是由于在不同的加载速率水平下出现了不同的断裂机制所致。

著录项

  • 作者

    Khanolkar, Gauri Rajendra.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 127 p.
  • 总页数 127
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号