首页> 外文学位 >Measuring and modeling the hydraulic effect of hydrokinetic energy extraction in the Tanana River, Alaska.
【24h】

Measuring and modeling the hydraulic effect of hydrokinetic energy extraction in the Tanana River, Alaska.

机译:在阿拉斯加的塔纳纳河上对动能提取的水力效应进行测量和建模。

获取原文
获取原文并翻译 | 示例

摘要

During September of 2014 and July of 2015, a 1.93 m diameter, open-center style, hydrokinetic device was deployed in the Tanana River (Alaska). River velocity was roughly 1.7 m/s and 2 m/s at the deployment site during September 2014 and July 2015 respectively. Using acoustic instruments, velocity and turbulence were measured in the vicinity of the turbine deployment location -- with and without a turbine deployed -- in order to characterize the impact of the turbine on river hydraulics and turbulence (including turbulent kinetic energy, turbulence intensity, and spectra). In addition, river hydraulics -- with and without a turbine deployed -- were modeled using a version of the Environmental Fluid Dynamics Code modified by Sandia National Labs to represent hydrokinetic devices. Measured and modeled velocity in the device's wake (5.2 meters downstream of the device) indicated a 0.38 m/s and a 0.18 m/s reduction in velocity, respectively. The Acoustic Doppler Current Profiler (ADCP) field measurements indicate that velocity is 97.5% recovered at 15.5 turbine diameters, while the model shows 97.5% recovery at 20.2 turbine diameters downstream. Likewise, field Acoustic Doppler Velocimeter (ADV) measurements from a separate testing day showed velocities being 97.5% recovered within 15.5 turbine diameters and fully recovered within 20.7 turbine diameters. ADV measurements indicate a 520% increase in turbulence intensity (TI), which appears to resolve within 20.7 turbine diameters. The effects on the sedimentary environment of a running turbine appear to be minimal. However there is a slight reduction in turbidity in the near field wake of the turbine.
机译:2014年9月至2015年7月,在塔纳纳河(阿拉斯加)部署了直径为1.93 m的开放式风动装置。 2014年9月和2015年7月,部署地点的河流流速分别约为1.7 m / s和2 m / s。使用声学仪器,在涡轮机部署位置附近(无论是否部署了涡轮机)都测量了速度和湍流,以表征涡轮机对河流水力和湍流的影响(包括湍流动能,湍流强度,和光谱)。此外,使用桑迪亚国家实验室(Sandia National Labs)修改的《环境流体动力学规范》(Environmental Fluid Dynamics Code)版本对水力系统(无论是否安装了涡轮机)进行建模,以表示水动力装置。在设备尾流(设备下游5.2米)中测量和建模的速度分别表示速度降低了0.38 m / s和0.18 m / s。声学多普勒电流剖面仪(ADCP)现场测量表明,在15.5涡轮直径下,速度恢复了97.5%,而模型在下游20.2涡轮直径下显示了97.5%的恢复。同样,来自独立测试日的现场声学多普勒测速仪(ADV)测量表明,在15.5涡轮直径范围内,速度可恢复到97.5%,在20.7涡轮直径范围内可完全恢复。 ADV测量表明湍流强度(TI)增加了520%,这似乎在20.7的涡轮直径范围内得以解决。对运行中的涡轮机的沉积环境的影响似乎很小。但是,在涡轮机的近场尾流中,浊度略有降低。

著录项

  • 作者

    Edgerly, Elan.;

  • 作者单位

    University of Alaska Anchorage.;

  • 授予单位 University of Alaska Anchorage.;
  • 学科 Alternative Energy.;Civil engineering.;Energy.;Hydrologic sciences.
  • 学位 M.S.
  • 年度 2015
  • 页码 101 p.
  • 总页数 101
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号