首页> 外文学位 >Data Assimilation Unit for the General Curvilinear Environmental Model.
【24h】

Data Assimilation Unit for the General Curvilinear Environmental Model.

机译:通用曲线环境模型的数据同化单元。

获取原文
获取原文并翻译 | 示例

摘要

Existing numerical models of water systems are based on assumptions and simplifications that can result in errors in a model's predictions; such errors can be reduced through the use of data assimilation, a technique that can significantly improve the success rate of predictions and operational forecasts. However, its implementation is difficult, particularly for physical ocean models, which are highly nonlinear and require a dense spatial discretization in order to correctly reproduce the dynamics. Kalman Filtering Techniques for Data Assimilation are the most widely used, and have been implemented in various applications, including the Ensemble Kalman Filter (EnKF). A Monte Carlo approach, this methodology has been extensively used in atmospheric and ocean prediction models to improve flow field forecasts; however, the computational effort and amount of memory required to implement it have proven an issue for operational use within a complicated, stratified system. Our General Curvilinear Environmental Modeling (GCEM) is the most complex system of its kind. Developed at the San Diego State University (SDSU) Computational Science Research Center (CSRC), it was specifically built for use on extremely high-resolution problems. The GCEM model solves tfhe three-dimensional primitive Navier-Stokes' equation using the Boussinesq approximation in non-hydrostatic form under a fully three-dimensional, general curvilinear mesh. Data assimilation has not been utilized in this type of system to date. A major challenge to be addressed is the high computational cost, in addition to the physics, typically incurred by a high-resolution numerical model, with a three-dimensional data assimilation scheme. In this work we present a model that is capable of investigating very high resolution dynamics, as well as incorporating measured observations into the dynamical system in order to accurately forecast estimates of the variable states in a shorter amount of time.
机译:现有的水系统数值模型是基于假设和简化的,这些假设和简化会导致模型预测中的错误。可以通过使用数据同化来减少此类错误,该技术可以显着提高预测和运营预测的成功率。然而,它的实现是困难的,特别是对于高度非线性并且需要密集的空间离散化以正确地再现动力学的物理海洋模型。用于数据同化的卡尔曼滤波技术使用最广泛,并且已在包括集成卡尔曼滤波器(EnKF)在内的各种应用中实现。这种方法是一种蒙特卡洛方法,已广泛用于大气和海洋预测模型中,以改善流场预测。然而,事实证明,实现它所需的计算量和内存量对于在复杂的分层系统中进行操作使用是一个问题。我们的通用曲线环境建模(GCEM)是同类中最复杂的系统。它是由圣地亚哥州立大学(SDSU)计算科学研究中心(CSRC)开发的,专门用于解决极高分辨率的问题。 GCEM模型使用Boussinesq近似以非静力学形式在全三维通用曲线网格下求解三维原始Navier-Stokes方程。迄今为止,这种类型的系统尚未使用数据同化。要解决的主要挑战是,除了物理上(通常由高分辨率数值模型引起的)外,还需要三维数据同化方案,因此需要较高的计算成本。在这项工作中,我们提出了一个模型,该模型能够研究非常高分辨率的动力学,并将测得的观测值并入动力学系统,以便在较短的时间内准确预测变量状态的估计值。

著录项

  • 作者单位

    San Diego State University.;

  • 授予单位 San Diego State University.;
  • 学科 Computer science.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 154 p.
  • 总页数 154
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号