首页> 外文学位 >Development of Precise Femtosecond Laser Micromachining Processes for Metals and Electrospun Nanofibers.
【24h】

Development of Precise Femtosecond Laser Micromachining Processes for Metals and Electrospun Nanofibers.

机译:飞秒激光精密加工技术在金属和静电纺纳米纤维方面的发展。

获取原文
获取原文并翻译 | 示例

摘要

Femtosecond pulse lasers have proven to be versatile for micro-scale ablation of a variety of materials with high quality machining due to minimal residual stress, heat affected zone, and melting. In addition, femtosecond laser is one of the non-cleanroom techniques that does not require masking, chemical reagents, and multiple steps. This simple and convenient micromachining technique enables machining of various materials in 3-dimensional geometry. However, some factors such as optical scattering, beam shape, and debris accumulation hinder the high quality of ablation.;In this dissertation, femtosecond laser was employed for the micromachining of electrospun nanofibers and metals. Optimization of a process for the high quality femtosecond laser machining was investigated. Femtosecond laser and electrospun poly(e-caprolactone) (PCL) nanofibers mesh interaction was analyzed by optical property measurements and the optical absorption and scattering coefficients were estimated. The specific energy required for ablating a unit volume of pure PCL nanofibers and polydimethylsiloxane-poly(e-caprolactone) (PDMS-PCL) core-shell nanofibers was measured. Material inherent optical properties including the ablation threshold fluence and the incubation coefficient of PDMS and PCL were estimated. Circular grooves were fabricated on aluminum, stainless steel 316, and Stellite 6 and circular disks were successfully machined from a thick section of Stellite. The tapered cross-section was detected from the Stellite disk and the tapering was minimized by varying pulse energy during ablation process. Moreover, a novel debris removal technique based on DC-dielectrophoresis (DEP) force was used to machine the linear and circular grooves on aluminum and the ablation depth and precision were compared with the gas jet debris removal technique.
机译:飞秒脉冲激光由于具有最小的残余应力,热影响区和熔化作用,因此已被广泛用于高质量加工的各种材料的微尺度烧蚀。此外,飞秒激光是一种非洁净室技术,不需要掩膜,化学试剂和多个步骤。这种简单方便的微机械加工技术能够以3维几何形状加工各种材料。然而,诸如光散射,光束形状和碎屑堆积等因素阻碍了高质量的烧蚀。在本文中,飞秒激光被用于电纺纳米纤维和金属的微加工。研究了高质量飞秒激光加工工艺的优化。飞秒激光和电纺聚(ε-己内酯)(PCL)纳米纤维的网状相互作用通过光学性能测量进行了分析,并估计了光吸收和散射系数。测量了烧蚀单位体积的纯PCL纳米纤维和聚二甲基硅氧烷-聚己内酯(PDMS-PCL)核壳纳米纤维所需的比能。估算了材料的固有光学特性,包括烧蚀阈值通量以及PDMS和PCL的孵育系数。在铝,不锈钢316和Stellite 6上制造了圆形凹槽,并成功地从厚实的Stellite加工出了圆盘。从司太立(Stellite)圆盘上检测到锥形横截面,并通过在消融过程中改变脉冲能量来减小锥度。此外,还采用了一种基于直流电介电泳(DEP)力的新型碎屑去除技术,对铝上的线性和圆形凹槽进行加工,并将烧蚀深度和精度与气体喷射碎屑去除技术进行了比较。

著录项

  • 作者

    Park, ChangKyoo.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Materials science.;Optics.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 164 p.
  • 总页数 164
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号