首页> 外文学位 >Interference and Resource Management in Heterogeneous Cellular Netowrks.
【24h】

Interference and Resource Management in Heterogeneous Cellular Netowrks.

机译:异构蜂窝网络中的干扰和资源管理。

获取原文
获取原文并翻译 | 示例

摘要

The task of future wireless cellular networks is to keep pace with the rapidly increasing demand for mobile data service. Statistics have shown that mobile data usage has been increasing by a factor of ten every four to five years. It is predicted that the global mobile data consumption will reach 20 billion gigabytes per month by the year 2020. To accommodate this gigantic amount of data demand, it is necessary to deploy many more base tranceiver stations (BTS's) of different coverage to form heterogeneous networks (HetNets)..;According to some early studies, the network capacity grows nearly linearly with the density of BTS's in the network due to the cell-splitting gain. With each cell serving fewer users, both the resources allocated to each user and the corresponding transmit rate increase in order to support high speed data services, such as file sharing, video streaming and real-time gaming. However, as the density of the nodes in a HetNets grows, the efficiency of each node (the throughput of each cell) also decreases. This drawback in efficiency mainly comes from significant inter-cell interference and potentially large traffic variations across time and space. The inter-cell interference mainly exists among nearby small cells. As a result of random deployment of small-cell BTS's (micro, pico, femto and relays), the cells of different sizes overlap with each other without clear boundaries. Hence traditional cell planning and static frequency reuse become inefficient. How to direct traffic and assign resources efficiently are important problems in HetNets.;This thesis addresses the interference and resource management problems from the viewpoint of two different timescales. The fast timescale is on the level of time slots (milliseconds), where single packet transmissions, user scheduling and channel estimation happen. In contrast, the slow timescale is on the scale of user session activities (seconds or minutes). On the fast timescale, accurate channel state information (CSI) may be available within a limited region. Operations such as scheduling, beamforming and power control can be performed autonomously based on the instantaneous CSI. On the slow timescale, long term average traffic and channel information can be exchanged over the entire network, which is more suitable for global optimization of network resources.;First, we considers a fast timescale method to deal with interference, i.e., interference alignment (IA) in cellular networks. By aligning intra- and inter-cell interference within a subspace of the spatial dimensions provided by the multi-input multi-output (MIMO) channels, a significant gain in degrees of freedom can be realized by jointly designing the precoders and receivers at different BTS's and user equipments (UEs) with full CSI. The performance of IA relies on accurate estimation of the CSI. Due to the overhead in training and pathloss effects, it is advisable to consider IA within a cluster of several cells.;The thesis then focuses on slow-timescale resource allocation in dense HetNets. A slow-timescale HetNet model is introduced to characterize the spatial traffic distribution and dynamic interference. A topology adaptation scheme is proposed to improve the energy efficiency of a HetNet. Topology adaptation is realized by adapting the UE-BTS association and the BTS on/off status, which is formulated as a mixed integer program. Substantial energy savings can be achieved in low and moderate traffic regimes without user quality of service (QoS) degradation.;The slow-timescale HetNet model is modified to consider spectrum allocation with traffic aware interference. We allow a group of ;Finally, the thesis generalizes the spectrum allocation problem to networks with k types of UEs (representing UEs from different location). To keep the analysis tractable, the interference is considered under the full buffer constraint. The joint user association and spectrum allocation problem is formulated as a delay minimization problem. Similar to the conservative allocation, the optimal solution uses no more than k of the 2n available reuse patterns. Further delay and throughput gains can be achieved by jointly optimizing the user association and spectrum allocation instead of optimizing spectrum allocation alone. To extend the solution to large HetNets, the optimization is reformulated through considering only local interference and local reuse patterns, which reduces the number of variables from O(nk2 n) to O(nk). To guarantee consistency of the local reuse patterns from a global point of view, a heuristic coloring algorithm is used. To achieve a good approximate solution, we propose to iterate between solving the approximate optimization problem and matching the solution using the coloring algorithm. Numerical results show that the approximate solution achieves close to optimal solution in small networks, and significantly outperforms the full spectrum reuse and optimal orthogonal allocations in moderate size networks. The proposed approximate solution provides limited gain in large networks, due to a large number of interfering BTS's forming a cycle.
机译:未来无线蜂窝网络的任务是跟上对移动数据服务快速增长的需求。统计数据表明,移动数据使用量每四到五年增长了十倍。预计到2020年,全球移动数据消费量将达到每月200亿千兆字节。为了适应这一庞大的数据需求,有必要部署更多不同覆盖范围的基站收发站(BTS),以形成异构网络。 (HetNets)..;根据一些早期研究,由于细胞分裂的增加,网络容量几乎随着网络中BTS的密度线性增长。随着每个小区为更少的用户服务,分配给每个用户的资源和相应的传输速率都会增加,以支持高速数据服务,例如文件共享,视频流和实时游戏。但是,随着HetNets中节点密度的增加,每个节点的效率(每个单元的吞吐量)也会降低。效率方面的这一缺陷主要来自小区间干扰以及跨时间和空间的巨大流量变化。小区间干扰主要存在于附近的小小区之间。由于小基站BTS(微型,微微,毫微微和中继)的随机部署,不同大小的小区彼此重叠而没有明确的边界。因此,传统的小区规划和静态频率重用变得效率低下。如何有效地引导流量和分配资源是HetNets中的重要问题。本文从两个不同的时标角度解决了干扰和资源管理问题。快速时标处于时隙级别(毫秒),在此发生单个数据包传输,用户调度和信道估计。相反,缓慢的时间尺度取决于用户会话活动的尺度(秒或分钟)。在快速的时间尺度上,可以在有限的区域内获得准确的信道状态信息(CSI)。可以基于瞬时CSI自主执行调度,波束成形和功率控制等操作。在较慢的时间尺度上,可以在整个网络上交换长期平均流量和信道信息,这更适合于网络资源的全局优化。;首先,我们考虑了一种快速的时间尺度方法来处理干扰,即干扰对准( IA)。通过在多输入多输出(MIMO)信道提供的空间维度的子空间内对齐小区间干扰和小区间干扰,可以通过共同设计不同BTS处的预编码器和接收器来实现自由度的显着提高以及具有完整CSI的用户设备(UE)。 IA的性能取决于CSI的准确估计。由于训练和路径损耗效应的开销,建议在几个单元的集群中考虑IA。论文着重研究了密集型HetNets中的慢时标资源分配。引入了慢时尺度的HetNet模型来表征空间流量分布和动态干扰。提出了一种拓扑自适应方案,以提高HetNet的能效。通过调整UE-BTS关联和BTS开/关状态(实现为混合整数程序),可以实现拓扑调整。在低流量和中等流量的情况下,可以实现大量的节能,而不会降低用户服务质量(QoS)。;修改了慢时尺度的HetNet模型,以考虑具有流量感知干扰的频谱分配。我们允许一组;最后,本文将频谱分配问题推广到具有k种类型UE(代表来自不同位置的UE)的网络。为了使分析易于处理,应在完全缓冲区约束下考虑干扰。将联合用户关联和频谱分配问题表述为延迟最小化问题。与保守分配类似,最佳解决方案使用的2n个可用重用模式中的k个不超过k个。通过联合优化用户关联和频谱分配,而不是单独优化频谱分配,可以进一步提高延迟和吞吐量。为了将解决方案扩展到大型HetNet,仅通过考虑本地干扰和本地重用模式来重新构造优化,从而将变量的数量从O(nk2 n)减少到O(nk)。为了从全局角度保证本地重用模式的一致性,使用了启发式着色算法。为了获得良好的近似解决方案,我们建议在解决近似优化问题与使用着色算法匹配解决方案之间进行迭代。数值结果表明,在小型网络中,近似解可以达到最优解。,并且明显优于中等规模网络中的全频谱重用和最佳正交分配。由于大量干扰BTS形成一个周期,因此所提出的近似解决方案在大型网络中提供的增益有限。

著录项

  • 作者

    Zhuang, Binnan.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 173 p.
  • 总页数 173
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号