首页> 外文学位 >Carbon based nano-composite materials for energy storage applications.
【24h】

Carbon based nano-composite materials for energy storage applications.

机译:碳基纳米复合材料,用于储能应用。

获取原文
获取原文并翻译 | 示例

摘要

Energy storage systems and devices are an integral part of advanced electronic technology. Electronic technology is ever-advancing, but in order to do so, it must be supported by all its systems. The energy storage system is one key system that may dictate the performance and limitation of such electronics. Thus, research emphasis on energy storage devices has been on improving the performance of energy storage devices, such as: improved energy and power density, increased stability and cycle life, as well as reduced costs. Lithium-ion-batteries, and supercapacitors offer the potential to meet energy storage demands and to be improved further upon. Herein, novel hybrid electrode materials utilizing high surface area carbon structures and transition metal oxide nanomaterial are implemented to improve the energy storage performance in lithium-ion-battery and supercapacitor applications. Initial characterization methods for all the electrode materials include: scanning electron microscopy (SEM), transmission electron microscopy (TEM), and x-ray diffraction (XRD). Supercapacitor performance is improved by utilizing porous-carbon/cerium-oxide nanoparticle (PC-CON) hybrid electrode material synthesized via a low temperature hydrothermal method and using tretraethyl ammonium tetrafluroborate in acetonitrile as the organic electrolyte. This electrode material allows for a hybrid capacitance mechanism that utilizes both, electric-double-layer capacitance and pseudocapacitance. Additionally, the excellent electrode-electrolyte interaction due to the electronchemical properties of the ionic electrolyte provides a better voltage window. Electrochemical measurements performed using a potentio-galvanostat revealed that the specific capacitance was improved by 30% using PC-CON electrode material compared with pure porous carbon. Lithium-ion-battery performance is improved over porous carbon by implementing two different hybrid anode materials: one utilizing porous-carbon/cerium-oxide nanoparticles (PC-CON) and the other utilizing microwave-reduced (exfoliated) graphene-oxide/titanium-oxide nanowires (MEGO-TON). High surface area carbon structures such as porous carbon and microwave-reduced graphene oxide alone provide high lithiation and excellent cycling capability by shortening the transport length for Li+ ions with the large electrode/ electrolyte interface. Addition of a transition metal oxide structure such as cerium oxide nanoparticles, which offer a high redox potential, can enhance surface electrochemical reactivity and increase capacity retention capability for a higher number of cycles, while the addition of titanium oxide nanowires, which offer high specific surface area, serve to improve lithium-ion electrode/electrolyte intercalation. Battery performance was measured using a battery analyzer. It was determined that the PC-CON hybrid anode material showed significantly higher specific capacity and better capacity retention, while the MEGO-TON hybrid showed even better results with a specific capacity improvement of 80% over porous carbon, as well as an improved charge-discharge rate.
机译:储能系统和设备是先进电子技术的组成部分。电子技术日新月异,但为此,必须得到其所有系统的支持。能量存储系统是一个可能决定这种电子设备的性能和局限性的关键系统。因此,对能量存储设备的研究重点在于改善能量存储设备的性能,例如:改进的能量和功率密度,增加的稳定性和循环寿命以及降低的成本。锂离子电池和超级电容器具有满足储能需求并有待进一步改进的潜力。在本文中,实现了利用高表面积碳结构和过渡金属氧化物纳米材料的新型混合电极材料,以改善锂离子电池和超级电容器应用中的能量存储性能。所有电极材料的初始表征方法包括:扫描电子显微镜(SEM),透射电子显微镜(TEM)和X射线衍射(XRD)。通过利用通过低温水热法合成的多孔碳/氧化铈纳米粒子(PC-CON)混合电极材料,并在乙腈中使用四氟硼酸四乙铵作为有机电解质,可以改善超级电容器的性能。该电极材料允许利用双电层电容和伪电容两者的混合电容机制。另外,由于离子电解质的电子化学性质,极好的电极-电解质相互作用提供了更好的电压窗口。使用恒电位仪进行的电化学测量表明,与纯多孔碳相比,使用PC-CON电极材料可将比电容提高30%。通过实施两种不同的混合阳极材料,锂离子电池的性能优于多孔碳:一种使用多孔碳/氧化铈纳米粒子(PC-CON),另一种利用微波还原(剥落的)氧化石墨烯/钛氧化物氧化物纳米线(MEGO-TON)。高表面积的碳结构(例如多孔碳和微波还原的氧化石墨烯)可以通过缩短具有较大电极/电解质界面的Li +离子的传输长度,从而提供高锂化和出色的循环能力。提供高氧化还原电势的过渡金属氧化物结构(如氧化铈纳米粒子)可以提高表面电化学反应性并在更高的循环次数下提高容量保持能力,同时添加提供高比表面的氧化钛纳米线面积,用于改善锂离子电极/电解质的嵌入。使用电池分析仪测量电池性能。已确定PC-CON混合阳极材料显示出明显更高的比容量和更好的容量保持率,而MEGO-TON混合材料显示出甚至更好的结果,比多孔碳的比容量提高了80%,并且电荷-容量得到了改善。放电率。

著录项

  • 作者

    Rodriguez Melo, Gerardo.;

  • 作者单位

    The University of Texas at El Paso.;

  • 授予单位 The University of Texas at El Paso.;
  • 学科 Mechanical engineering.
  • 学位 M.S.
  • 年度 2015
  • 页码 75 p.
  • 总页数 75
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 语言学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号