首页> 外文学位 >A control-theoretic design and analysis framework for resilient hard real-time systems.
【24h】

A control-theoretic design and analysis framework for resilient hard real-time systems.

机译:用于弹性硬实时系统的控制理论设计和分析框架。

获取原文
获取原文并翻译 | 示例

摘要

We introduce a new design metric called system-resiliency which characterizes the maximum unpredictable external stresses that any hard-real-time performance mode can withstand. Our proposed system-resiliency framework addresses resiliency determination for real-time systems with physical and hardware limitations. Furthermore, our framework advises the system designer about the feasible trade-offs between external system resources for the system operating modes on a real-time system that operates in a multi-parametric resiliency environment.;Modern multi-modal real-time systems degrade the system's operational modes as a response to unpredictable external stimuli. During these mode transitions, real-time systems should demonstrate a reliable and graceful degradation of service. Many control-theoretic-based system design approaches exist. Although they permit real-time systems to operate under various physical constraints, none of them allows the system designer to predict the system-resiliency over multi-constrained operating environment. Our framework fills this gap; the proposed framework consists of two components: the design-phase and runtime control. With the design-phase analysis, the designer predicts the behavior of the real-time system for variable external conditions. Also, the runtime controller navigates the system to the best desired target using advanced control-theoretic techniques. Further, our framework addresses the system resiliency of both uniprocessor and multicore processor systems.;As a proof of concept, we first introduce a design metric called thermal-resiliency, which characterizes the maximum external thermal stress that any hard-real-time performance mode can withstand. We verify the thermal-resiliency for the external thermal stresses on a uniprocessor system through a physical testbed. We show how to solve some of the issues and challenges of designing predictable real-time systems that guarantee hard deadlines even under transitions between modes in an unpredictable thermal environment where environmental temperature may dynamically change using our new metric.;We extend the derivation of thermal-resiliency to multicore systems and determine the limitations of external thermal stress that any hard-real-time performance mode can withstand. Our control-theoretic framework allows the system designer to allocate asymmetric processing resources upon a multicore processor and still maintain thermal constraints.;In addition, we develop real-time-scheduling sub-components that are necessary to fully implement our framework; toward this goal, we investigate the potential utility of parallelization for meeting real-time constraints and minimizing energy. Under malleable gang scheduling of implicit-deadline sporadic tasks upon multiprocessors, we show the non-necessity of dynamic voltage/frequency regarding optimality of our scheduling problem. We adapt the canonical schedule for DVFS multiprocessor platforms and propose a polynomial-time optimal processor/frequency-selection algorithm.;Finally, we verify the correctness of our framework through multiple measurable physical and hardware constraints and complete our work on developing a generalized framework.
机译:我们引入了一种称为系统弹性的新设计指标,该指标描述了任何硬实时性能模式都可以承受的最大不可预测的外部压力。我们提出的系统弹性框架解决了具有物理和硬件限制的实时系统的弹性确定。此外,我们的框架还为系统设计人员提供了有关在多参数弹性环境下运行的实时系统上系统运行模式的外部系统资源之间可行权衡的建议。;现代多模式实时系统会使系统性能降低系统的操作模式,以应对不可预测的外部刺激。在这些模式转换期间,实时系统应演示服务的可靠且平稳的降级。存在许多基于控制理论的系统设计方法。尽管它们允许实时系统在各种物理约束下运行,但是它们都不能让系统设计人员预测多约束运行环境下的系统弹性。我们的框架填补了这一空白;所提出的框架由两个部分组成:设计阶段和运行时控制。通过设计阶段分析,设计人员可以预测外部条件变化时实时系统的行为。而且,运行时控制器使用高级控制理论技术将系统导航到最佳期望目标。此外,我们的框架还解决了单处理器和多核处理器系统的系统弹性问题。作为概念证明,我们首先引入一种称为热弹性的设计指标,该指标可表征任何硬实时性能模式下的最大外部热应力。可以承受。我们通过物理测试平台验证了单处理器系统上外部热应力的热弹性。我们展示了如何解决设计可预测的实时系统的一些问题和挑战,这些实时系统即使在不可预测的热环境(环境温度可能会使用我们的新指标动态变化)下的模式之间转换时也能保证硬性的最后期限。;我们扩展了热的推导-对多核系统的弹性,并确定任何硬实时性能模式都可以承受的外部热应力的限制。我们的控制理论框架使系统设计人员可以在多核处理器上分配非对称处理资源,并且仍然保持热约束。此外,我们还开发了实时调度的子组件,这些子组件是完全实现我们的框架所必需的;为实现这一目标,我们研究了并行化在满足实时约束和最小化能耗方面的潜在效用。在多处理器上隐含最后期限零星任务的可塑性群调度下,对于调度问题的最优性,我们展示了动态电压/频率的不必要性。我们针对DVFS多处理器平台调整规范的时间表,并提出多项式时间最优处理器/频率选择算法。最后,我们通过多个可测量的物理和硬件约束来验证我们框架的正确性,并完成了开发通用框架的工作。

著录项

  • 作者

    Hettiarachchi, Pradeep M.;

  • 作者单位

    Wayne State University.;

  • 授予单位 Wayne State University.;
  • 学科 Computer science.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 167 p.
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号