首页> 外文学位 >A multiscale component mode synthesis method for dynamic analysis of nanostructures.
【24h】

A multiscale component mode synthesis method for dynamic analysis of nanostructures.

机译:一种用于纳米结构动态分析的多尺度分量模式合成方法。

获取原文
获取原文并翻译 | 示例

摘要

Nanoscale structures, materials and systems have found widespread applications in many areas including communications, information technology, medical, mechanical, and aerospace technologies. For the last decade, advances in nanotechnology as well as nanomachining techniques have enabled rapid development of novel nanodevices. The design, optimization, and fabrication of nanomaterials and nanosystems for various applications can be accelerated by developing accurate physical theories and computational design tools that describe the motion and operation of nanostructures. There are two major challenges in the physical modeling and computational analysis of nanostructures. First, when the characteristic length of the nanomaterials scales down to several tens of nanometers, nanoscale effects such as material defects and surface effects become significant. Classical theories based on continuum mechanics that have been developed for microsystems and macrosystems may not be directly applicable for nanosystems because of the small scale effects. Second, although the characteristic length of nanostructures is often a few nanometers, the entire system could still be the size of micrometers. Therefore, a typical nanostructure can still contain millions of atoms. In this case, atomistic simulation methods such as ab initio methods, molecular dynamics(MD) and Monte Carlo simulations, are computationally impractical for design and optimization of the nanostructures.;This thesis describes a method for multiscale dynamic analysis of nanostructures. The multiscale approach consists of a top-down hierarchical substructure decomposition and a bottom-up component mode synthesis. At the bottom level, atomistic descriptions are employed to compute the vibrational modes in the atomistic substructures where "nano effects" are significant. The vibrational modes are computed for the continuum substructures by using continuum theories. A component mode synthesis (CMS) technique is employed to synthesize the vibrational modes of the bottom-level substructures to construct the vibrational modes for the top-level structure. At the top-level, the constructed global vibrational modes are used to generate a reduced-order system by using the mode superposition method to perform the dynamic analysis. In this work, the multiscale component mode synthesis approach is first developed for linear dynamic analysis of nanostructures and then extended to solve systems with higher physical complexity which includes nonlinear dynamics and finite temperature effects.;In comparison with other existing multiscale approaches, the proposed multiscale component mode synthesis method has the following advantages. First, the multiscale decomposition combined with component mode synthesis reduces the system degrees of freedom significantly. Second, as the global continuous modes are used to couple the components of different length scales, the artificial reflection of the high-frequency waves at atomistic-continuum interfaces is eliminated. Third, multiscale component mode synthesis can have the same time scale in both the atomistic and continuum regions. Finally, in this method, each component can be independently modeled and arbitrary combined. These advantages make the multiscale component mode synthesis method well suited for modeling and simulation of the large and complex nanosystems.
机译:纳米结构,材料和系统已在许多领域得到广泛应用,包括通信,信息技术,医疗,机械和航空技术。在过去的十年中,纳米技术以及纳米加工技术的进步推动了新型纳米器件的快速发展。通过开发描述纳米结构的运动和操作的精确物理理论和计算设计工具,可以加快用于各种应用的纳米材料和纳米系统的设计,优化和制造。在纳米结构的物理建模和计算分析中,存在两个主要挑战。首先,当纳米材料的特征长度缩小到几十纳米时,诸如材料缺陷和表面效应的纳米级效应变得显着。针对微观系统和宏观系统开发的基于连续力学的经典理论可能由于规模效应小而无法直接应用于纳米系统。其次,尽管纳米结构的特征长度通常为几纳米,但整个系统仍可能是微米大小。因此,典型的纳米结构仍然可以包含数百万个原子。在这种情况下,原子序模拟方法,分子动力学(MD)和蒙特卡洛模拟等原子模拟方法对于纳米结构的设计和优化在计算上是不切实际的。;本文介绍了一种用于纳米结构多尺度动态分析的方法。多尺度方法包括自上而下的分层子结构分解和自下而上的组件模式综合。在最底层,使用原子描述来计算“纳米效应”很重要的原子子结构中的振动模式。通过使用连续理论,为连续子结构计算振动模式。组件模式合成(CMS)技术用于合成底层子结构的振动模式,以构造顶层结构的振动模式。在顶层,通过使用模式叠加方法执行动态分析,使用构造的全局振动模式来生成降阶系统。在这项工作中,首先开发了用于纳米结构线性动态分析的多尺度分量模式综合方法,然后扩展为解决具有更高物理复杂性的系统,包括非线性动力学和有限的温度效应。与其他现有的多尺度方法相比,提出的多尺度方法分量模式合成方法具有以下优点。首先,多尺度分解与分量模式综合相结合,大大降低了系统的自由度。其次,由于使用全局连续模式耦合不同长度尺度的分量,因此消除了原子-连续谱界面上的高频波的人工反射。第三,多尺度分量模式合成在原子区域和连续区域都可以具有相同的时间尺度。最后,在这种方法中,每个组件都可以独立建模并任意组合。这些优点使多尺度分量模式合成方法非常适合大型复杂纳米系统的建模和仿真。

著录项

  • 作者

    Lan, Jun.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Engineering.;Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号