首页> 外文学位 >Strategies for promoting neural plasticity after experimental spinal cord injury.
【24h】

Strategies for promoting neural plasticity after experimental spinal cord injury.

机译:实验性脊髓损伤后促进神经可塑性的策略。

获取原文
获取原文并翻译 | 示例

摘要

Repetitive movement therapies such as body weight supported treadmill walking combined with functional electrical stimulation are being utilized to promote recovery of sensorimotor function in people with spinal cord injury (SCI). With the long-term objective of understanding mechanisms by which these therapies may harness neural plasticity to accelerate and enhance sensorimotor recovery, three studies were conducted in an SCI rodent model.;The hypothesis that daily treadmill locomotor therapy could enhance recovery of sensorimotor control in rodents with moderate-severe incomplete SCI was tested in the second study. Kinematics indicated that animals receiving therapy did not develop outward hindlimb rotation deficits during overground walking. All animals receiving therapy versus half without therapy, walked consistently with improved footfall coordination and interlimb kinematics on the treadmill at six weeks post injury. However intralimb joint angle kinematics and hindlimb Hoffman reflexes remained impaired. These impairments could be a result of the altered motoneuron morphology that can occur after severe SCI.;Neuromuscular electrical stimulation (NMES) could provide repetitive movement of specific joints. Hence, an adaptive NMES based intermittent stimulation paradigm (aNMES) was implemented in incomplete SCI rats with implanted intramuscular stimulating electrodes. aNMES automatically and reliably produced specified hip movements, accounting for non-linear muscle recruitment, fatigue and cutaneous spinal reflexes during long stimulation sessions. Sessions could be consistently repeated over multiple days.;Together these studies indicate that changes in motoneuronal structural plasticity may account for impaired motor control after SCI. While the deficits could be ameliorated with the clinically prevalent treadmill training therapy, a more targeted approach using aNMES for specific joints may be needed for recovery of finer motor coordination. Future studies could combine these different strategies to promote neural plasticity after spinal cord injury.;Four motoneuron pools were simultaneously retrogradely labeled with AlexaFluor conjugated cholera toxin beta injected into hindlimb flexor and extensor muscles in chronic SCI (transected or incomplete) and uninjured rats. In transected animals, motoneuron soma size decreased in one pool while somas were elongated in the other three. Changes in form could relate to changes in dendritic arbor scale and orientation and together lead to altered motoneuron function after severe SCI.
机译:重复运动疗法,例如体重支持的跑步机步行结合功能性电刺激,正在被用来促进脊髓损伤(SCI)患者的感觉运动功能的恢复。为了长期了解这些疗法可利用神经可塑性来促进和增强感觉运动恢复的机制,在SCI啮齿动物模型中进行了三项研究;假设每天跑步机运动疗法可以增强啮齿动物感觉运动控制的恢复。在第二项研究中对中度至严重不完全SCI的患者进行了测试。运动学表明接受治疗的动物在地面行走过程中没有出现向外的后肢旋转缺陷。受伤后六周,所有接受治疗的动物与不接受治疗的动物相比,在脚踏机上的脚步协调性和跨肢运动学均得到改善,从而持续行走。然而,下肢关节角度运动学和后肢霍夫曼反射仍然受损。这些损伤可能是严重SCI后可能发生的运动神经元形态改变的结果。神经肌肉电刺激(NMES)可能会导致特定关节的重复运动。因此,在具有植入的肌内刺激电极的不完全SCI大鼠中实施了基于自适应NMES的间歇刺激范例(aNMES)。 aNMES自动可靠地产生特定的髋部运动,这是长时间刺激过程中非线性肌肉募集,疲劳和皮肤脊柱反射的原因。会议可以连续几天重复进行;这些研究表明,运动神经元结构可塑性的改变可能是SCI后运动控制受损的原因。虽然可以通过临床上普遍的跑步机训练疗法来缓解这种不足,但是可能需要针对特定​​关节使用aNMES的更有针对性的方法来恢复更好的运动协调性。未来的研究可能会结合这些不同的策略来提高脊髓损伤后的神经可塑性。;同时向慢性SCI(横断或不完全)和未受伤的大鼠的后肢屈肌和伸肌注射AlexaFluor共轭霍乱毒素β逆向标记四个运动神经元池。在横切动物中,运动神经元的体细胞大小在一个池中减小,而在其他三个池中则延长。形态的改变可能与树突状乔木的大小和方向的改变有关,并导致严重SCI后运动神经元功能的改变。

著录项

  • 作者

    Fairchild, Mallika Dipayan.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Health Sciences Rehabilitation and Therapy.;Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 193 p.
  • 总页数 193
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:58

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号