首页> 外文学位 >Structure-Property Relationships in Semiconducting Polymers and Small Molecules Probed by Synchrotron X-ray Methods.
【24h】

Structure-Property Relationships in Semiconducting Polymers and Small Molecules Probed by Synchrotron X-ray Methods.

机译:用同步加速器X射线方法探测半导体聚合物和小分子的结构-性质关系。

获取原文
获取原文并翻译 | 示例

摘要

Organic semiconductors are an exciting class of materials that have potential to produce low-cost, printable, and flexible electronic devices. Moving to the next generation of organic semiconductors that will result in greater efficiency requires advancements in the areas of materials chemistry, molecular assembly, predictive modelling, and device optimization. Here, we focus on morphology and demonstrate how it is linked to each of these areas. Understanding the connections among chemistry, thin film microstructure, and charge transport remains a major challenge in the field. We examined materials systems relevant to organic solar cells, memory devices, and transistors, with a focus on synchrotron-based X-ray techniques. For a blend of a polymer and small molecule, applicable to solar cells, control of molecular orientation in the small molecule is especially important for non-fullerene based molecules that exhibit anisotropic charge transport. In ferroelectric-semiconductor polymer blends used in organic memory, improved control over phase separation length scales is achieved by altering the chemistry of the semiconducting polymer to tune polymer-polymer interactions. Complementary simulations can facilitate characterization of organic semiconductors. First-principles predictions of X-ray absorption spectroscopy are applied to semiconducting polymers, and prove critical for understanding complex experimental data related to molecular orientation and electronic structure in general. Overall, these studies provide insights into key factors that should be considered in the development of new organic semiconductors.
机译:有机半导体是一类令人兴奋的材料,具有生产低成本,可印刷和柔性电子设备的潜力。转向将产生更高效率的下一代有机半导体,需要在材料化学,分子组装,预测建模和器件优化等领域取得进步。在这里,我们专注于形态学,并演示了形态学如何与这些领域相关联。了解化学,薄膜微结构和电荷传输之间的联系仍然是该领域的主要挑战。我们重点研究了基于同步加速器的X射线技术,研究了与有机太阳能电池,存储设备和晶体管相关的材料系统。对于适用于太阳能电池的聚合物和小分子的共混物,控制小分子中的分子取向对于显示各向异性电荷传输的非富勒烯基分子尤其重要。在用于有机存储器的铁电-半导体聚合物共混物中,通过改变半导体聚合物的化学性质来调节聚合物-聚合物相互作用,可以改善对相分离长度尺度的控制。互补模拟可以促进有机半导体的表征。 X射线吸收光谱的第一性原理预测已应用于半导体聚合物,并证明对于理解与分子取向和电子结构相关的复杂实验数据至关重要。总体而言,这些研究提供了对开发新有机半导体应考虑的关键因素的见解。

著录项

  • 作者

    Su, Gregory M.;

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Materials science.;Polymer chemistry.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 174 p.
  • 总页数 174
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号