首页> 外文学位 >Using occupant feedback in model predictive control for indoor thermal comfort and energy optimization.
【24h】

Using occupant feedback in model predictive control for indoor thermal comfort and energy optimization.

机译:在模型预测控制中使用乘员反馈,以实现室内热舒适性和能源优化。

获取原文
获取原文并翻译 | 示例

摘要

Buildings are our society's biggest energy users. Reducing building energy consumption and creating a better indoor thermal environment have becoming a more and more important topic among policy makers, building scientists/engineers, and the masses. To achieve this target, great efforts have been made in several aspects including but not limited to using better thermal insulation materials, integrating renewable power sources, developing intelligent buildings, and creating better and more efficient building climate control systems.;With the ever increasing computation power, advancements in building modeling and simulation, and accurate weather forecast, model predictive control (MPC) reveals its power as one of the best control methods in building climate control to save energy and maintain high level of indoor comfort. Although many researchers have investigated extensively on how to use building's active or passive thermal storage along with accurate weather forecast and occupants' schedule prediction to reduce energy consumption or shift loads, not much research has been done on how a better thermal comfort model used in MPC would help reducing energy usage and improve comfort level. Furthermore, unlike lighting control in which occupants have plenty of opportunities to adjust lights and blinds so that visual comfort can be improved, centralized and automated building thermal control systems take away users' ability to intervene the control system directly.;In this dissertation, we study occupant augmented MPC control design in which feedback information from occupants is used to adaptively update the prediction given by a data-driven dynamic thermal sensation model. It is demonstrated both in simulation and chamber experiment that including users directly in the feedback loop of MPC control design provides opportunity to significantly save energy and still maintain thermal comfort.;We propose a data-driven state-space dynamic thermal sensation (DTS) model based on data collected in a chamber experiment. The developed model takes air temperature as input, and the occupant actual mean thermal sensation vote as an output. To account for cases in which indoor environmental or occupant associated conditions deviate from the nominal condition conducted in the chamber experiment, a time-varying offset parameter in the model is adaptively estimated by an extended Kalman filter using feedback information from occupants.;We develop two different MPC controls based on the proposed DTS model: a certainty equivalence MPC and a chance constrained MPC. By using this thermal comfort model in the MPC design, users are included directly in the feedback loop. We compare the DTS model based MPC with predicted mean vote (PMV) model based MPC. Simulation results demonstrate that an MPC based on occupant feedback can be expected to produce better energy and thermal comfort outcomes than an MPC based on PMV model. The proposed chance-constrained MPC is designed to allow specifying the probability of violation of thermal comfort constraint, so that a balance between energy saving and thermal comfort can be achieved.;The DTS model based MPC is evaluated in chamber experiment. A hierarchical control strategy is used. On the high level, MPC calculates optimal supply air temperature of the chamber's HVAC system. On the low level, the actual supply air temperature of the HVAC system is controlled by the chiller and heater using PI control to achieve the optimal level set by the high level. Results from experiments show that the DTS-based MPC with occupant feedback provides the opportunity to reduce energy consumption significantly while maintain occupant thermal comfort.
机译:建筑物是我们社会最大的能源使用者。在决策者,建筑科学家/工程师和群众中,减少建筑能耗并创造更好的室内热环境已成为越来越重要的话题。为了实现这一目标,已经在多个方面做出了巨大努力,包括但不限于使用更好的保温材料,集成可再生能源,开发智能建筑以及创建更好,更高效的建筑气候控制系统。功率,建筑物建模和仿真的进步以及准确的天气预报,模型预测控制(MPC)揭示了其作为建筑物气候控制中最佳的控制方法之一,以节省能源并保持高水平的室内舒适度。尽管许多研究人员对如何使用建筑物的主动或被动储热以及精确的天气预报和居住者的时间表预测进行了广泛的研究,以减少能耗或转移负荷,但对于如何在MPC中使用更好的热舒适模型进行的研究还很少。将有助于减少能源消耗并提高舒适度。此外,与照明控制不同,在照明控制中,居住者有足够的机会调节灯光和百叶窗,从而可以改善视觉舒适度,而集中式和自动化的建筑热控制系统会剥夺用户直接干预控制系统的能力。研究乘员增强MPC控制设计,其中乘员的反馈信息用于自适应更新由数据驱动的动态热感模型给出的预测。在仿真和腔室试验中均表明,直接将用户包括在MPC控制设计的反馈回路中,为大幅节省能源并保持热舒适性提供了机会。我们提出了一种数据驱动的状态空间动态热感(DTS)模型基于腔室实验中收集的数据。所开发的模型以气温为输入,而乘员实际平均热感投票为输出。为了解决室内环境或与乘员相关的条件偏离室内实验中标称条件的情况,模型中的时变偏移参数由扩展的卡尔曼滤波器根据乘员的反馈信息进行自适应估计。基于建议的DTS模型的不同MPC控件:确定性等价MPC和机会受限MPC。通过在MPC设计中使用这种热舒适模型,用户将直接包含在反馈回路中。我们比较了基于DTS模型的MPC与基于预测平均投票(PMV)模型的MPC。仿真结果表明,与基于PMV模型的MPC相比,基于乘员反馈的MPC有望产生更好的能量和热舒适性结果。提出的机会受限的MPC旨在允许指定违反热舒适约束的可能性,从而实现节能与热舒适之间的平衡。;在室内试验中评估了基于DTS模型的MPC。使用了分级控制策略。在较高级别上,MPC可计算出腔室HVAC系统的最佳送风温度。在低水平时,HVAC系统的实际送风温度由使用PI控制的冷却器和加热器控制,以实现由高水平设定的最佳水平。实验结果表明,基于DTS的MPC具有乘员反馈功能,可以在保持乘员热舒适性的同时显着降低能耗。

著录项

  • 作者

    Chen, Xiao.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 126 p.
  • 总页数 126
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号