首页> 外文学位 >Management effects on herbage responses, size of nutrient pools, and litter dynamics in grazed 'Tifton 85' bermudagrass (Cynodon spp.) pastures.
【24h】

Management effects on herbage responses, size of nutrient pools, and litter dynamics in grazed 'Tifton 85' bermudagrass (Cynodon spp.) pastures.

机译:牧草对“ Tifton 85”百慕大草(Cynodon spp。)草场对牧草响应,养分池大小和垫料动态的管理影响。

获取原文
获取原文并翻译 | 示例

摘要

Appropriate management is important to ensure efficient nutrient cycling and pasture sustainability. Two experiments were conducted to determine the effect of management strategies of Tifton 85 bermudagrass (Cynodon spp.) pastures on herbage characteristics, size of important nutrient pools, and litter dynamics. In Experiment 1, herbage accumulation, nutritive value, and persistence responses were measured from nine treatments that included all combinations of three post-graze stubble heights (SH; 8, 16, and 24 cm) and three lengths of grazing cycle (GC, 10h grazing time plus rest period; 14, 21, and 28 d). Pastures were fertilized with 250 kg N ha-1 yr-1. In Experiment 2, effects of N fertilization (50, 150, and 250 kg N ha-1) and SH (8, 16, and 24 cm) on size of nutrient pools and plant litter dynamics were measured on rotationally stocked Tifton 85 bermudagrass pastures. Experiment 1 showed that Tifton 85 bermudagrass is tolerant of a wide range of grazing management, making it a good candidate for grazed grasslands in warm climates. Greatest herbage accumulation was associated with close grazing (8-cm SH) followed by a relatively long rest period (28 d) or with lax grazing (24-cm SH) followed by a short GC (14 d). Persistence data showed that a 24-cm SH should not be used because of greater incidence of stand loss. If the 24-cm SH is ruled out, then grazing to 8-cm SH every 28 d is recommended to maximize herbage accumulation, or to 16-cm SH every 14 to 21 d for greater nutritive value without negative impact on persistence or a major reduction in herbage accumulation. Nutrient pools in live herbage, plant litter, root-rhizome, and soil pools increased with taller SH, while increasing N fertilization increased N accumulation in live herbage, plant litter, and root-rhizome pools, but did not affect N content in soil. Carbon content in live herbage and soil pools increased with increasing N fertilizer rate. These data suggest that lower grazing intensity (i.e., taller stubble heights) and greater N fertilization increase C sequestration. Thus, grassland management has potential to increase C sequestration in soils, but the changes are likely to be relatively small. Considering litter dynamics, increasing SH increased existing litter mass and litter mass deposition rate. Nitrogen fertilization had little effect on litter mass, but it had an important effect on litter quality and decomposition. In grasslands in which the proportion of herbage mass consumed is low, grass litter plays a major role in nutrient dynamics, particularly nutrient immobilization and slowing release for plant uptake. Immobilization can have negative effects on grassland productivity and persistence by reducing quantity of nutrients available for plant growth. High levels of N fertilization are thought to increase litter quality and nutrient release, but based on results with Tifton 85 bermudagrass, there was little difference in short-term nutrient contribution from litter of low- and high-input pastures. Although litter quality is greater under high N inputs, it remains sufficiently low that nutrient immobilization continues to occur. In conclusion, Tifton 85 bermudagrass thrives under a wide range of grazing management allowing producers to choose a strategy that fits their objectives. Pasture management has a significant but relatively small effect on C sequestration, but the effect of grazing and fertilization on litter mass and decomposition is significant and can impact long-term pasture sustainability. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)
机译:适当的管理对于确保有效的养分循环和牧场的可持续性很重要。进行了两个实验,以确定Tifton 85百慕大草(Cynodon spp。)牧场的管理策略对牧草特性,重要养分库的大小和垫料动态的影响。在实验1中,从9种处理方法中测量了草料的积累,营养价值和持久性响应,其中包括3种放牧后茬高度(SH; 8、16和24 cm)和3种放牧周期(GC,<放牧时间10小时加上休息时间; 14、21和28 d)。用250 kg N ha-1 yr-1施肥的牧场。在实验2中,在旋转饲养的Tifton 85百慕大草牧场上测量了氮肥(50、150和250 kg N ha-1)和SH(8、16和24 cm)对养分池大小和凋落物动力学的影响。 。实验1表明,Tifton 85百慕大草可以耐受多种放牧管理,使其成为温暖气候下放牧草地的理想选择。最大的牧草积累与紧密放牧(8 cm SH),随后相对较长的休息时间(28 d)或放牧放牧(24 cm SH)和较短的GC(14 d)有关。持久性数据显示,不宜使用24 cm的SH,因为林分损失的发生率更高。如果排除24 cm的SH,建议每28天放牧8 cm的SH,以最大程度地增加牧草的蓄积;或每14到21 d放牧16 cm的SH,以获得更大的营养价值,而对持续性或主减少牧草堆积。较高的SH,活性草,植物凋落物,根茎和根际土壤中的养分池增加,而增加的氮肥则增加了活性草,植物凋落物和根状茎,根茎中氮的积累,但不影响土壤中的氮含量。随着氮肥用量的增加,活草和土壤库中的碳含量增加。这些数据表明较低的放牧强度(即较高的茬高)和较大的氮肥增加了固碳。因此,草地管理有可能增加土壤中的固碳,但变化可能相对较小。考虑垫料动力学,增加SH会增加现有垫料质量和垫料质量沉积速率。施氮对垫料质量影响不大,但对垫料质量和分解影响很大。在草场消耗量比例低的草原上,草屑在养分动态中起主要作用,尤其是养分固定和植物吸收释放的缓慢。固定化会减少植物生长可用的养分,从而对草地生产力和持久性产生负面影响。高水平的氮肥肥被认为可以提高凋落物的质量和养分释放,但是根据Tifton 85百慕大草的结果,低投入和高投入牧场的凋落物对短期养分的贡献几乎没有差异。尽管在高氮输入下凋落物质量更高,但仍然低到足以使营养物固定化的程度。总之,Tifton 85百慕大草在广泛的放牧管理下rm壮成长,使生产者能够选择适合其目标的策略。牧场管理对固碳的影响很大,但影响相对较小,但放牧和施肥对凋落物质量和分解的影响却很重要,并且可能影响牧场的长期可持续性。 (可通过佛罗里达大学图书馆网站获得本文的全文。请检查http://www.uflib.ufl.edu/etd.html)

著录项

  • 作者

    Liu, Kesi.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Agriculture Agronomy.;Agriculture Range Management.;Agriculture Soil Science.;Biogeochemistry.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 194 p.
  • 总页数 194
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号