首页> 外文学位 >Acceleration of Non-Equidiffusive Flames in Channels: Computational Simulations and Analytical Studies.
【24h】

Acceleration of Non-Equidiffusive Flames in Channels: Computational Simulations and Analytical Studies.

机译:通道中非等价火焰的加速:计算模拟和分析研究。

获取原文
获取原文并翻译 | 示例

摘要

When a premixed flame front spreads in a narrow pipe, wall friction continuously distorts the flame shape. As a result, the flame front acquires a larger surface area, consumes more fuel per unit time and, thereby, propagates faster. While this mechanism of flame acceleration due to wall friction has widely been studied, especially within the last decade, the analytical and computational studies were mostly devoted to equidiffusive flames, where the Lewis number, defined as the thermal to mass diffusivity ratio, is unity, Le = 1. However, in reality thermal and mass diffusion are typically not balanced, especially in rich and lean mixtures. Hence, the micro-scale, diffusional-thermal effects may appear comparable with macro-scale phenomena such as wall friction. The present work sheds the light on the dynamics and morphology of Le ≠ 1 flames in channels. Specifically, it studies, by means of computational and analytical endeavors, how the interplay of finite flame thickness, stretch effect and the thermal-molecular diffusion influence the overall flame acceleration scenario. It is shown that Le > 1 flames accelerate slower, due to an effective thickening of the flame front. In contrast, Le < 1 flames exhibit faster acceleration due to effective flame channeling and other morphological deformations resembling the diffusional-thermal (DT) instability. The analysis also incorporates the internal transport flame properties into the theory of flame acceleration due to wall friction, by means of the Markstein number, Mk, that characterizes the flame response to curvature and stretch. Being a positive or negative function of thermal-chemical combustion parameters, such as the thermal expansion ratio and the Lewis and Zel'dovich numbers, the Markstein number either restrains or promotes the flame acceleration. While Mk may substantially facilitate the flame acceleration in narrow channels, this effects diminishes with the increase in the channel width. The analysis is accompanied by extensive numerical simulations of the Navier-Stokes and combustion equations, which clarify the impact of the Lewis number on the flame acceleration. It is obtained that, for Le lower than a certain critical value, at the initial stage of flame acceleration, globally-convex flame fronts split into two or more "fingers", accompanied by a drastic increase in the flame surface area and associated enhancement of the flame acceleration. Later, however, the flame fingers meet, promptly consuming the troughs, which rapidly diminishes the flame surface area and moderates the acceleration. Eventually, this results in a single, globally-convex flame front that keeps accelerating. Overall, the thermal-diffusive effects facilitate the flame acceleration scenario, thereby advancing a potential deflagration-to-detonation transition.
机译:当预混合的火焰前沿在狭窄的管道中扩散时,壁摩擦会不断扭曲火焰形状。结果,火焰前沿获得更大的表面积,每单位时间消耗更多的燃料,从而传播得更快。尽管对壁摩擦引起的火焰加速的机理进行了广泛的研究,尤其是在过去的十年中,但分析和计算研究主要致力于等扩散火焰,其中路易斯数(定义为热扩散与质量扩散比)是统一的, Le =1。但是,实际上,热扩散和质量扩散通常不平衡,尤其是在浓混合气和稀混合气中。因此,微观的扩散热效应可能看起来与宏观现象如壁摩擦相当。本研究揭示了通道中Le≠1火焰的动力学和形态。具体而言,它通过计算和分析的方法研究有限火焰厚度,拉伸效应和热分子扩散的相互作用如何影响整体火焰加速情况。结果表明,Le> 1火焰的加速较慢,这是由于火焰前缘的有效增厚。相反,Le <1火焰由于有效的火焰引导和其他类似于热扩散(DT)不稳定性的形态变形而显示出更快的加速。该分析还通过马克斯坦数Mk将内部运输火焰特性纳入由于壁摩擦而引起的火焰加速理论中,该特性描述了火焰对曲率和拉伸的响应。 Markstein数是热化学燃烧参数(例如热膨胀率以及Lewis和Zel'dovich数)的正或负函数,可以抑制或促进火焰加速。尽管Mk可以大大促进狭窄通道中的火焰加速,但是随着通道宽度的增加,这种影响会减小。该分析伴随着Navier-Stokes和燃烧方程的大量数值模拟,从而阐明了Lewis数对火焰加速度的影响。可以得出,当Le低于某个临界值时,在火焰加速的初始阶段,整体凸出的火焰前沿分裂为两个或更多的“手指”,伴随着火焰表面积的急剧增加和相关的火焰增强。火焰加速。但是,随后火焰指头会合,迅速消耗了槽,这迅速减小了火焰表面积并减缓了加速度。最终,这会导致单个全局凸出的火焰前锋不断加速。总体而言,热扩散效应促进了火焰加速,从而促进了潜在的爆燃-起爆过渡。

著录项

  • 作者

    Bilgili, Serdar A.;

  • 作者单位

    West Virginia University.;

  • 授予单位 West Virginia University.;
  • 学科 Mechanical engineering.
  • 学位 M.S.
  • 年度 2015
  • 页码 64 p.
  • 总页数 64
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号