首页> 外文学位 >Coding and scheduling in energy harvesting communication systems.
【24h】

Coding and scheduling in energy harvesting communication systems.

机译:能量收集通信系统中的编码和调度。

获取原文
获取原文并翻译 | 示例

摘要

Wireless networks composed of energy harvesting devices will introduce several transformative changes in wireless networking: energy self-sufficient, energy self-sustaining, perpetual operation; and an ability to deploy wireless networks at hard-to-reach places such as remote rural areas, within the structures, and within the human body. Energy harvesting brings new dimensions to the wireless communication problem in the form of intermittency and randomness of available energy. In such systems, the communication mechanisms need to be designed by explicitly accounting for the energy harvesting constraints. In this dissertation, we investigate the effects of intermittency and randomness in the available energy for message transmission in energy harvesting communication systems. We use information theoretic and scheduling theoretic frameworks to determine the fundamental limits of communications with energy harvesting devices.;We first investigate the information theoretic capacity of the single user Gaussian energy harvesting channel. In this problem, an energy harvesting transmitter with an unlimited sized battery communicates with a receiver over the classical AWGN channel. As energy arrives randomly and can be saved in the battery, codewords must obey cumulative stochastic energy constraints. We show that the capacity of the AWGN channel with such stochastic channel input constraints is equal to the capacity with an average power constraint equal to the average recharge rate. We provide two capacity achieving schemes: save-and-transmit and best-effort-transmit. In the save-and-transmit scheme, the transmitter collects energy in a saving phase of proper duration that guarantees that there will be no energy shortages during the transmission of code symbols. In the best-effort-transmit scheme, the transmission starts right away without an initial saving period, and the transmitter sends a code symbol if there is sufficient energy in the battery, and a zero symbol otherwise. Finally, we consider a system in which the average recharge rate is time-varying in a larger time scale and derive the optimal offline power policy that maximizes the average throughput, by using majorization theory.;Next, we remove the battery from the model to understand the impact of stochasticity in the energy arrival on the communication rate. We consider the single user AWGN channel in the zero energy storage case. We observe that the energy arrival is a channel state and channel state information is available at the transmitter only. We determine the capacity in this case using Shannon strategies. We, then, extend the capacity analysis to an additive Gaussian multiple access channel where multiple users with energy harvesting transmitters of zero energy storage communicate with a single receiver. We investigate the achievable rate region under static and stochastic amplitude constraints on the users' channel inputs. Finally, we consider state amplification in a single user AWGN channel with an energy harvesting transmitter to analyze the trade-off between the objectives of decoding the message and estimating the energy arrival sequence.;Next, we specialize in the finite battery regime in the energy harvesting channel. We focus on the case of side information available at the receiver side. We determine the capacity of an energy harvesting channel with an energy harvesting transmitter and battery state information available at the receiver side. This is an instance of a finite-state channel and the channel output feedback does not increase the capacity. We state the capacity as maximum directed mutual information from the input to the output and the battery state. We identify sufficient conditions for the channel to have stationary input distributions as optimal distributions. We also derive a single-letter capacity expression for this channel with battery state information at both sides and infinite-sized battery at the transmitter. Then, we determine the capacity when energy arrival side information is available at the receiver side. We first find an n-letter capacity expression and show that the optimal coding is based on only current battery state s_i. We, next, show that the capacity is expressed as maximum directed information between the input and the output and prove that the channel output feedback does not increase the capacity.;Then, we consider security aspects of communication in energy harvesting systems. In particular, we focus on a wiretap channel with an energy harvesting transmitter where a legitimate pair of users wish to establish secure communication in the presence of an eavesdropper in a noisy channel. We characterize the rate-equivocation region of the Gaussian wiretap channel under static and stochastic amplitude constraints. First, we consider the Gaussian wiretap channel with a static amplitude constraint on the channel input. We prove that the entire rate-equivocation region of the Gaussian wiretap channel with an amplitude constraint is obtained by discrete input distributions with finite support. We also prove the optimality of discrete input distributions in the presence of an additional variance constraint. Next, we consider the Gaussian wiretap channel with an energy harvesting transmitter with zero energy storage. We prove that single-letter Shannon strategies span the entire rate-equivocation region and obtain numerically verifiable necessary and sufficient optimality conditions.;In the remaining parts of this dissertation, we consider optimal transmission scheduling for energy harvesting transmitters. First, we consider the optimization of single user data transmission with an energy harvesting transmitter which has a limited battery capacity, communicating over a wireless fading channel. We consider two objectives: maximizing the throughput by a deadline, and minimizing the transmission completion time of the communication session. We optimize these objectives by controlling the time sequence of transmit powers subject to energy storage capacity and causality constraints. We, first, study optimal offline policies. We introduce a directional water-filling algorithm which provides a simple and concise interpretation of the necessary optimality conditions. We show the optimality of the directional water-filling algorithm for the throughput maximization problem. We solve the transmission completion time minimization problem by utilizing its equivalence to its throughput maximization counterpart. Next, we consider online policies. We use dynamic programming to solve for the optimal online policy that maximizes the average number of bits delivered by a deadline under stochastic fading and energy arrival processes with causal channel state feedback. We also propose near-optimal policies with reduced complexity, and numerically study their performances along with the performances of the offline and online optimal policies.;Then, we consider a broadcast channel with an energy harvesting transmitter with a finite capacity battery and M receivers. We derive the optimal offline transmission policy that minimizes the time by which all of the data packets are delivered to their respective destinations. We obtain structural properties of the optimal transmission policy using a dual problem and determine the optimal total transmit power sequence by a directional water-filling algorithm. We show that there exist M-1 cut-off power levels such that each user is allocated the power between two corresponding consecutive cut-off power levels subject to the availability of the allocated total power level. Based on these properties, we propose an iterative algorithm that gives the globally optimal offline policy.;Finally, we consider parallel and fading Gaussian broadcast channels with an energy harvesting transmitter. Under offline knowledge of energy arrival and channel fading variations, we characterize the transmission policies that achieve the boundary of the maximum departure region in a given interval. In the case of parallel broadcast channels, we show that the optimal total transmit power policy that achieves the boundary of the maximum departure region is the same as the optimal policy for the non-fading broadcast channel, which does not depend on the priorities of the users, and therefore is the same as the optimal policy for the non-fading scalar single user channel. The optimal total transmit power can be found by a directional water-filling algorithm while optimal splitting of the power among the parallel channels is performed in each epoch separately. In the case of fading broadcast channels, the optimal power allocation depends on the priorities of the users. We obtain a modified directional water-filling algorithm for fading broadcast channels to determine the optimal total transmit power allocation policy.
机译:由能量收集设备组成的无线网络将在无线网络中带来一些变革性变化:能量自给自足,能量自持,永久运行;能够在难以到达的地方(如偏远的农村地区,建筑物内部和人体内部)部署无线网络。能量收集以可用能量的间歇性和随机性的形式为无线通信问题带来了新的维度。在这样的系统中,需要通过明确考虑能量收集约束来设计通信机制。在本文中,我们研究了间歇性和随机性对能量收集通信系统中消息传输可用能量的影响。我们使用信息理论和调度理论框架来确定与能量收集设备进行通信的基本限制。我们首先研究单用户高斯能量收集通道的信息理论容量。在此问题中,具有不受限制大小的电池的能量收集发射器通过经典AWGN信道与接收器进行通信。当能量随机到达并可以保存在电池中时,代码字必须遵守累积的随机能量约束。我们表明,具有这种随机信道输入约束的AWGN信道的容量等于具有平均功率约束的平均容量与平均再充电速率相等的容量。我们提供两种容量实现方案:保存并传输和尽力而为传输。在保存并发送方案中,发送器在适当持续时间的保存阶段中收集能量,以保证在代码符号的发送过程中不会出现能量短缺。在尽力而为的传输方案中,传输会立即开始,而无需初始保存周期;如果电池中有足够的能量,则传输器将发送一个代码符号,否则将发送一个零符号。最后,我们考虑了一个系统,在该系统中,平均充电率在较大的时间范围内是随时间变化的,并通过使用主化理论推导了使平均吞吐量最大化的最佳离线电源策略。了解能量到达中的随机性对通信速率的影响。我们考虑零能量存储情况下的单用户AWGN信道。我们观察到能量到达是信道状态,并且信道状态信息仅在发射机处可用。在这种情况下,我们使用香农策略来确定容量。然后,我们将容量分析扩展到加性高斯多路访问信道,在该信道中,具有零能量存储的能量收集发送器的多个用户与单个接收器进行通信。我们研究在用户通道输入的静态和随机振幅约束下可实现的速率区域。最后,我们考虑使用能量收集发射器在单个用户AWGN信道中进行状态放大,以分析解码消息的目标与估计能量到达序列之间的折衷。接下来,我们专门研究能量中的有限电池状态收获渠道。我们关注接收方可用的边信息的情况。我们使用能量收集发送器和接收器端可用的电池状态信息来确定能量收集通道的容量。这是有限状态通道的一个实例,通道输出反馈不会增加容量。我们将容量表示为从输入到输出以及电池状态的最大定向互信息。我们为通道确定了充分的条件,使其具有固定的输入分布作为最佳分布。我们还导出了该通道的单字母容量表达式,两侧都有电池状态信息,而发送器处有无限大容量的电池。然后,我们确定在接收方可获得能量到达方信息时的容量。我们首先找到一个n字母的容量表达式,并表明最佳编码仅基于当前电池状态s_i。接下来,我们将容量表示为输入和输出之间的最大定向信息,并证明通道输出反馈不会增加容量。然后,我们考虑了能量收集系统中通信的安全性。特别是,我们专注于带有能量收集发射器的窃听通道,在该通道中,合法的一对用户希望在嘈杂的通道中存在窃听器的情况下建立安全的通信。我们描述了静态和随机幅度约束下高斯窃听通道的速率等效区域。第一,我们考虑对通道输入具有静态幅度约束的高斯窃听通道。我们证明了在有限支持下通过离散输入分布获得了具有振幅约束的高斯窃听通道的整个速率等效区域。我们还证明了在存在其他方差约束的情况下离散输入分布的最优性。接下来,我们考虑带有能量收集变送器的高斯窃听通道,其能量存储为零。我们证明了单字母香农策略跨越了整个速率等效区域,并获得了数值可验证的必要和充分的最优性条件。在本文的其余部分,我们考虑了能量采集发射机的最优传输调度。首先,我们考虑使用能量收集变送器优化单用户数据传输,该能量收集变送器的电池容量有限,可以通过无线衰落信道进行通信。我们考虑两个目标:在截止期限之前使吞吐量最大化,并在通信会话的传输完成时间上最小化。我们通过控制受能量存储能力和因果关系约束的发射功率的时序来优化这些目标。首先,我们研究最佳的离线政策。我们介绍了一种定向注水算法,该算法对必要的最佳条件提供了简单明了的解释。对于吞吐量最大化问题,我们展示了定向注水算法的最优性。我们通过利用其等效于吞吐量最大化对应项来解决传输完成时间最小化问题。接下来,我们考虑在线政策。我们使用动态规划来解决最佳在线策略,该策略在因果信道状态反馈的随机衰落和能量到达过程下,最大限度地增加了截止日期之前交付的平均位数。我们还提出了降低复杂性的近最优策略,并通过脱机和在线最优策略的性能对它们的性能进行了数值研究;然后,我们考虑了一个带有能量收集发射器,有限容量电池和M个接收器的广播信道。我们得出了最佳的离线传输策略,该策略将所有数据包传递到其各自目的地的时间最小化。我们使用对偶问题获得最优传输策略的结构特性,并通过定向注水算法确定最优总发射功率序列。我们显示存在M-1个截止功率电平,这样每个用户都可以根据分配的总功率电平的可用性在两个相应的连续截止功率电平之间分配功率。基于这些特性,我们提出了一种迭代算法,该算法给出了全局最优的离线策略。最后,我们考虑了带有能量收集发射器的并行和衰落的高斯广播信道。在能量到达和信道衰落变化的离线知识下,我们描述了在给定间隔内达到最大离开区域边界的传输策略。在并行广播信道的情况下,我们表明达到最大离开区域边界的最优总发射功率策略与非衰落广播信道的最优策略相同,这不依赖于优先级。用户,因此与非衰落标量单用户通道的最佳策略相同。最佳总发射功率可以通过定向注水算法找到,而并行信道之间功率的最佳分配是在每个时期分别进行的。在广播信道衰落的情况下,最佳功率分配取决于用户的优先级。我们获得了一种用于减少广播频道的改进的定向注水算法,以确定最佳的总发射功率分配策略。

著录项

  • 作者

    Ozel, Omur.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 335 p.
  • 总页数 335
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号