首页> 外文学位 >Computational Fluid Dynamics Modeling of Biomass Gasification in a Fluidized Bed Reactor.
【24h】

Computational Fluid Dynamics Modeling of Biomass Gasification in a Fluidized Bed Reactor.

机译:流化床反应器中生物质气化的计算流体动力学建模。

获取原文
获取原文并翻译 | 示例

摘要

Computational Fluid Dynamics (CFD) modeling of gasification is proven to be an effective strategy to examine the multi-physics of a gasification system and also as a means to estimate or measure internal parameters of a gasifier which otherwise will be indeterminate through costly and time-consuming experimentation. An Eulerian--Eulerian CFD model was developed to simulate the biomass gasification process in a bubbling fluidized bed gasifier (BFBG). The gasification model considered three individual phases of biomass, bed material of sand and gas in a BFBG. This model considered the complicated gasification reaction kinetics including moisture evaporation, devolatilization or primary pyrolysis, gas-solid heterogeneous reactions and gas-gas homogeneous reactions. The biomass particles were modeled as a composite based on their proximate compositions. The solid-solid contact heat transfer due to the stochastic interactions of biomass particles and the heating sand bed material were also modeled. As a direct result of the implementation of particle-particle heat transfer model due to the collision of the biomass particles and the bed material of the gasifier, CH4 content in the syngas increased by 32% (from 3.6 to 4.7 vol. %) at the gasifier outlet whilst CO2 content increased by 52% (from 5.5 vol. % to 8.3 vol. %) for gasification conducted at an equivalence ratio (ER) of 0.3. A similar trend was seen at 0.4 ER with CH4 and CO2 mole fractions increasing by 18% (from 3.4 to 4.0 vol. %) and 7% (from 7.6 to 8.1 vol. %) at the gasifier outlet, respectively. It was also clear from the wide variations in percentage increments of CO 2 and CH4 produced for gasification at 0.3 ER and 0.4 ER that, while particle-particle heat transfer may have some impact on the production of CH4 and CO2, the influence of ER on the synthesis gas composition and quality was significant.
机译:气化的计算流体动力学(CFD)建模已被证明是一种有效的策略,可用于检查气化系统的多物理场特性,并且也是估算或测量气化炉内部参数的一种方法,否则该方法将无法通过昂贵且费时的时间来确定。费力的实验。建立了Eulerian-Eulerian CFD模型以模拟鼓泡流化床气化炉(BFBG)中的生物质气化过程。气化模型考虑了BFBG中生物质,砂床层和气体的三个独立相。该模型考虑了复杂的气化反应动力学,包括水分蒸发,脱挥发分或一次热解,气固多相反应和气-气均相反应。基于生物质颗粒的接近组成,将其建模为复合材料。还模拟了由于生物质颗粒和加热砂床材料的随机相互作用而产生的固-固接触传热。由于生物质颗粒与气化炉床层材料的碰撞而实施颗粒-颗粒传热模型的直接结果是,合成气中的CH4含量在反应器中增加了32%(从3.6体积%至4.7体积%)。气化炉出口,同时以等价比(ER)0.3进行气化时,CO2含量增加了52%(从5.5%到8.3%)。在0.4 ER处观察到类似趋势,CH4和CO2摩尔分数在气化炉出口分别增加了18%(从3.4%至4.0%(体积))和7%(从7.6%至8.1%(体积))。从0.3 ER和0.4 ER的气化过程中产生的CO 2和CH4的百分比增量变化很大也很明显,虽然颗粒间的传热可能会对CH4和CO2的产生产生一定的影响,但ER对合成气的组成和质量很重要。

著录项

  • 作者

    Agyemang, Samuel Asomaning.;

  • 作者单位

    North Carolina Agricultural and Technical State University.;

  • 授予单位 North Carolina Agricultural and Technical State University.;
  • 学科 Chemical engineering.;Computer science.;Environmental engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 191 p.
  • 总页数 191
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:52:25

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号