首页> 外文学位 >Serial and distributed-memory parallel computation of sooting, steady and time-dependent, laminar flames using a modified vorticity-velocity formulation.
【24h】

Serial and distributed-memory parallel computation of sooting, steady and time-dependent, laminar flames using a modified vorticity-velocity formulation.

机译:使用改进的涡度-速度公式对烟尘,稳定和时间相关的层流火焰进行串行和分布式内存并行计算。

获取原文
获取原文并翻译 | 示例

摘要

Steady and time-dependent laminar flames are computed using a damped, modified Newton's method. Research efforts are focused on two main areas: simulating time-dependent laminar flames with detailed chemistry and transport, and advancing the understanding of soot modeling in laminar flames. Toward an end goal of simulating sooting time-dependent flames, a modified fluid-dynamical formulation is developed and tested on steady flows, the sensitivity of a sectional soot model to transport effects is studied, and nonsooting time-dependent flames are computed and validated against experimental data.;A modification is introduced to the vorticity-velocity formulation, and, using the case of non-reacting steady incompressible pipe flow, it is shown that the modified formulation is better at conserving mass than the unmodified formulation. The modified formulation is applied to a steady laminar methane/air diffusion flame and to a periodically-forced time-dependent methane/air diffusion flame, and comparisons are made with experimental data to validate the model. Very good agreement is seen between numerical predictions and experimental measurements for temperature and major species.;A comparative study follows in which three different transport models are implemented for a variety of sooting ethylene/air flames. This study specifically investigates how transport modeling can affect predictions of soot concentration in counterflow and coflow ethylene/air flames using a sectional representation for spheroid growth. The transport models are applied to diffusion and partially premixed counterflow flames for a range of strain rates, and to a coflow diffusion flame with varying fuel/air ratios, and their effects on soot volume fraction predictions are quantified. It is shown that for some combustion regimes, higher-order transport modeling is necessary to predict soot volume fraction accurately.;The work culminates with a distributed-memory parallel computation of a sooting, time-dependent coflow diffusion flame, in which a periodic fluctuation is imposed on the fuel velocity for four different amplitudes of modulation. Due to the computational intensity of the problem, which would be intractable on a serial computer, the solution proceeds in parallel using strip domain decomposition over 40 CPUs. A full set of numerical predictions of time-resolved temperature, soot volume fraction, and species that contribute to the soot model is presented, and the effect of the oscillating fluid field on soot volume fraction is characterized.
机译:使用阻尼的,改进的牛顿法来计算稳态和随时间变化的层流火焰。研究工作集中在两个主要领域:用详细的化学和运输过程模拟随时间变化的层流火焰,以及增进对层流火焰中烟尘建模的理解。为达到模拟烟灰随时间变化的火焰的最终目标,开发了改进的流体动力学公式并在稳定流上进行了测试,研究了截面烟灰模型对输运效应的敏感性,并计算了非烟灰随时间变化的火焰并对其进行了验证实验数据。对涡旋-速度公式进行了修改,并且在非反应性稳定不可压缩管道流量的情况下,表明修改后的公式在保存质量方面比未修改时的公式更好。修改后的公式应用于稳定的层状甲烷/空气扩散火焰和周期性强制的时间相关的甲烷/空气扩散火焰,并与实验数据进行比较以验证模型。在温度和主要物质的数值预测和实验测量之间可以看到非常好的一致性。进行比较研究,其中对三种烟尘状乙烯/空气火焰实施了三种不同的传输模型。这项研究使用球状体生长的截面表示,专门研究运输模型如何影响逆流和同流乙烯/空气火焰中烟灰浓度的预测。将运输模型应用于扩散和部分预混合的逆流火焰,以获得一定的应变率,并应用于具有变化的燃料/空气比的同流扩散火焰,并量化其对烟灰体积分数预测的影响。结果表明,在某些燃烧状态下,高阶输运模型对于准确预测烟灰体积分数是必要的。该工作以烟灰分,随时间变化的烟流扩散火焰的分布式内存并行计算而告终,其中周期性波动对于四个不同的调制幅度,在燃油速度上施加“α”。由于问题的计算强度(这在串行计算机上很难解决),因此该解决方案使用40个CPU上的条带域分解并行进行处理。给出了时间分辨温度,烟灰体积分数和对烟灰模型有贡献的物种的全套数值预测,并表征了振荡流体场对烟灰体积分数的影响。

著录项

  • 作者

    Dworkin, Seth Benjamin.;

  • 作者单位

    Yale University.;

  • 授予单位 Yale University.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 230 p.
  • 总页数 230
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号