首页> 外文学位 >Micro-Mechanical Simulation of Ductile Fracture Processes in Structural Steel.
【24h】

Micro-Mechanical Simulation of Ductile Fracture Processes in Structural Steel.

机译:结构钢中延性断裂过程的微机械模拟。

获取原文
获取原文并翻译 | 示例

摘要

The micro-mechanics based approach to the study of ductile fracture has successfully overcome many of the limitations (such as large scale material yielding, cyclic loading, and size/scale dependence of J) of traditional fracture mechanics approaches (i.e. K, J and CTOD's). A number of the currently available micro-mechanics models (i.e. SMCS, Hancock and McKenzie, 1975; VGM, Kanvinde and Deierlein, 2006) predict fracture accurately under high triaxiality and axisymmetric conditions; however, the mentioned conditions do not encompass the full range of stress states (including low-triaxiality or non-axisymmetric conditions) which are relevant to the structural, mechanical and aerospace industries. As such, the primary objective of the work presented in this dissertation is to inform the development of a more general damage model which is applicable to a broader range of stress states and seismic (i.e. cyclic) loading which can result in ultra-low cycle fatigue (ULCF) failures.;New model development is realized through a collaborative multi-scale approach which combines the results of an extensive test series (Smith, 2014) and a series of computational void simulations. To probe the full range of practical stress/loading conditions, a more general finite element (FE) framework for simulating the response of micro-voids is developed. The new void cell framework and the results of the 146 void simulations comprise the primary body of work presented in this dissertation.;The void simulations can be divided into two groups: (1) those which effectively simulate an array of voids while modeling a representative void cell, and (2) those which explicitly model an array of voids. Void growth rates measured from the single void model (SVM) are used to inform the selection of a new functional form for the damage model presented in this dissertation while the multi-void model (MVM) provides qualitative and quantitative insights regarding localized deformation between neighboring voids. Findings from the MVM simulations are (1) in agreement with observations obtained from sectioned images (Smith, 2014) of fracture coupons that expose undergrown voids in the near vicinity of the failure surface and (2) are used to develop a strain-based indicator for localization initiation that shows strong agreement with failure strains observed from coupon scale tests (Myers, 2009). Moreover, the trends observed from both model types indicate that there is minimal void growth and that localization does not occur at low triaxialities. Both finding suggest that an alternate fracture mechanism than the traditionally excepted 'growth to coalescence' mechanism is active under these conditions.;Despite the power of micro-mechanics based models, the ability to arrive at accurate fracture predictions is contingent on the calibration of the parameters which define the material constitutive response. The capability for complementary FE simulations to reproduce the force-displacement response obtained from physical tests (which is typically relied upon for model calibration) provides a false sense of security and neglects issues (i.e. non-uniqueness of the model parameter set) associated with model over-fitting. To investigate the susceptibility of typical calibration approaches to result in non-unique fits, a simple example is employed. Results of the example demonstrate that (1) multiple (and therefore non-unique) parameter sets may adequately reproduce the force-displacement response of typical calibration specimen and (2) that local plastic strains (often used to evaluate local fracture criteria) can result in error more than 65% despite agreement with the calibration metric. Thus, selection of parameter sets based solely on qualitative agreement between test data and complementary simulations can lead to erroneous results when evaluating material resistance to fracture.
机译:基于微力学的延性断裂研究方法已成功克服了传统断裂力学方法(例如K,J和CTOD)的许多局限性(例如,大规模的材料屈服,循环载荷以及J的尺寸/尺度依赖性) )。当前许多可用的微力学模型(例如SMCS,Hancock和McKenzie,1975; VGM,Kanvinde和Deierlein,2006)可以在高三轴性和轴对称条件下准确地预测断裂。但是,上述条件并不包括与结构,机械和航空航天工业有关的全部应力状态(包括低三轴性或非轴对称条件)。因此,本论文的主要目的是为开发更通用的损伤模型提供参考,该模型适用于更广泛的应力状态和地震(即循环)载荷,这可能导致超低循环疲劳(ULCF)失败。;新模型开发是通过协作的多尺度方法实现的,该方法将广泛的测试系列(Smith,2014年)的结果与一系列计算无效性仿真相结合。为了探究实际应力/载荷条件的全部范围,开发了一种用于模拟微孔响应的更通用的有限元(FE)框架。新的空隙单元框架和146个空隙模拟的结果构成了本文的主要工作。空隙模拟可分为两组:(1)在建模代表时有效地模拟空隙阵列的空隙模拟无效单元格;以及(2)那些显式模拟一个无效数组的单元格。通过单空隙模型(SVM)测得的空隙增长率用于为本文提出的损伤模型选择一种新的功能形式,而多空隙模型(MVM)则提供了关于相邻构件之间局部变形的定性和定量见解。虚空。通过MVM模拟得出的结果是(1)与从断裂试样的切片图像(Smith,2014)中获得的观察结果一致,这些断裂试样暴露了破坏表面附近的欠发达的空隙,并且(2)用于开发基于应变的指示器的本地化启动与从试样量表测试中观察到的失效应变显示出强烈的一致性(Myers,2009年)。此外,从这两种模型类型观察到的趋势表明,空隙增长最小,并且在低三轴度下不会发生定位。这两个发现都表明在这些条件下,除了传统的``增长到合并''机制之外,还有一种替代的断裂机制是活跃的;尽管基于微力学的模型具有强大的功能,但能够准确地预测裂缝的能力取决于对模型的校准。定义材料本构响应的参数。补充有限元模拟能够再现从物理测试中获得的力-位移响应(通常用于模型校准)的能力提供了一种错误的安全感,并且忽略了与模型相关的问题(即模型参数集的非唯一性)过度拟合。为了研究典型校准方法导致非唯一拟合的敏感性,采用了一个简单示例。该示例的结果表明(1)多个(因此是非唯一的)参数集可以充分再现典型校准样本的力-位移响应,并且(2)可以产生局部塑性应变(通常用于评估局部断裂准则)尽管与校准指标一致,但误差仍超过65%。因此,在评估材料的抗断裂性时,仅基于测试数据和补充模拟之间的定性一致性来选择参数集可能会导致错误的结果。

著录项

  • 作者

    Cooke, Ryan James.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Civil engineering.;Mechanics.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 193 p.
  • 总页数 193
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号