首页> 外文学位 >Evaluating thrust belt response to glacial erosion, synorogenic sedimentation, and subduction of a thick plate: Analog modeling insights into the St. Elias Range, Alaska.
【24h】

Evaluating thrust belt response to glacial erosion, synorogenic sedimentation, and subduction of a thick plate: Analog modeling insights into the St. Elias Range, Alaska.

机译:评估逆冲带对冰川侵蚀,协同沉积和厚板俯冲的响应:对阿拉斯加圣埃利亚斯山脉的模拟建模见解。

获取原文
获取原文并翻译 | 示例

摘要

The goal of this research is to improve our understanding of the structural configuration of convergent margins in response to glacial erosion, synorogenic sedimentation, and subduction of thick crust. Currently, most mechanical development models of convergent margins are disconnected from the role of these processes and their potential coupled tectonic response. To evaluate the role of these processes, we utilized analog sandbox modeling to generate physical insights into the structural growth of wedge shaped thrust belts. We then compared our modeling results to recent, field-based geological and geophysical studies of the St. Elias orogen, located along the convergent margin of southern Alaska. This margin is characterized by large erosive glacial systems, some of the highest recorded depositional rates on earth, flat-slab subduction of ~17 km thick section of an oceanic plateau, and is one of the most tectonically active plate boundaries on earth.;The sandbox models in our study simulate the growth and development of an accreting wedge whose deformation is governed primarily by frictional, brittle deformational mechanisms. We used a digital image correlation technique to post-process sequenced photographed images that allow us to calculate velocity vector fields to understand deformational stages and structural configurations of these sandbox analog models. Three models were designed to test the thrust belt response to glacial erosion, synorogenic sedimentation, and subduction of a thick crust. All three models are then compared against an initial baseline model to understand how model parameters such as erosion, sedimentation, and subduction processes independently influence the structural configuration of the orogenic wedge.;Major findings from the erosion model are that the wedge responds to erosion in a longitudinal valley by activation of several coeval fore- and back- thrust faults. These coeval structures serve to accommodate shortening and vertical uplift of deeper parts of the wedge in response to progressive erosion. The backthrust faults are located directly beneath the glacial valley or farther back in the wedge. Potential implications for the St. Elias Range are the erosional model is consistent with: a major unexpected structure, the Bagley fault, which is located beneath the Bagley Ice Valley (Bruhn et al., 2012), an important backthrust fault in the development of the thrust belt (Berger et al., 2008), and the exhumation of deeper crustal rocks beneath glacial valley (Enkelmann et al., 2015).;The sedimentation model key findings are that the introduction of a thick section of synorogenic strata to the front of the wedge resulted in a geometry change of wider imbricated thrust sheets and broader open hanging wall folds. These changes in thrust sheet geometry in the model results are consistent with similar thrust faults styles interpreted or seen onshore and offshore in the St. Elias orogenic belt (Worthington et al., 2010; Pavlis et al., 2012).;Subduction of a thick crust model major findings are the basal decollement fault of the wedge stepped up to a higher stratigraphic level and that the wedge structural configuration adjusted by displacement on coeval out-of-sequence forethrust and backthrust faults, allowing uplift of the entire wedge. Potential implications for the St. Elias orogen with progressive subduction of thick crust are that the model results are consistent with the relocation of the decollement to higher stratigraphic positions (Pavlis et al., 2012; Van Avendonk et al., 2013), activation of out-of-sequence faults are common (Meigs et al., 2008; Pavlis et al., 2012), and exhumation of deeper crustal rocks within the interior of the wedge (Enkelmann et al., 2015). In summary, our findings indicate that glacial erosion, syntectonic sedimentation, and subduction of thick crust may have significant impact on the structural configuration of glaciated convergent margins.
机译:这项研究的目的是增进我们对收敛边缘的结构构型的理解,以应对冰川侵蚀,协同成因沉积和厚壳俯冲。目前,大多数汇聚边缘的机械开发模型都与这些过程及其潜在的构造响应作用无关。为了评估这些过程的作用,我们利用模拟沙盒模型对楔形止推带的构造增长产生了物理见解。然后,我们将建模结果与位于阿拉斯加南部会聚边缘的圣伊莱亚斯造山带的最新,基于现场的地质和地球物理研究进行了比较。该边缘的特征是大型的侵蚀性冰川系统,某些记录在地球上的最高沉积速率,平坦的平板俯冲到海洋高原厚约17 km的部分,并且是地球上构造活动最活跃的板块边界之一。我们研究中的沙箱模型模拟了吸积楔的生长和发育,其变形主要由摩擦,脆性变形机制控制。我们使用了数字图像相关技术对序列化的已拍摄图像进行后处理,从而使我们能够计算速度矢量场,以了解这些沙箱模拟模型的变形阶段和结​​构构造。设计了三种模型来测试逆冲带对冰川侵蚀,协同成因沉积和厚壳俯冲的响应。然后将这三个模型与初始基准模型进行比较,以了解模型参数(例如侵蚀,沉积和俯冲过程)如何独立地影响造山楔的结构构造。;侵蚀模型的主要发现是楔对地形的侵蚀有响应。通过激活多个同时期的前,逆推断层而形成一个纵向谷。这些凹陷结构可适应渐进式腐蚀,从而缩短和深化楔形物的较深部分。反冲断层位于冰河谷的正下方或楔形中的更深处。对圣伊莱亚斯山脉的潜在影响是与以下侵蚀模型相一致的:一个主要的意外构造,即位于巴格利冰谷下方的巴格利断层(Bruhn等,2012),是该盆地发育中的重要反推断层。逆冲带(Berger等,2008),以及冰河谷下方更深的地壳岩石的发掘(Enkelmann等,2015).;沉积模型的主要发现是,在该地区引入了厚厚的成因地层楔形的前部导致较宽的带齿止推板和较宽的敞开式悬挂壁褶皱的几何形状变化。模型结果中逆冲断层几何形状的这些变化与在圣埃利亚斯造山带陆上和海上解释或看到的类似的逆冲断层样式一致(Worthington等,2010; Pavlis等,2012)。厚壳模型的主要发现是:楔形的基底脱层断层逐步上升到较高的地层水平,并且楔形结构的构造通过在同卵轮次错序的前推力和反冲断层上的位移进行了调整,从而使整个楔形隆升。 St. Elias造山带渐进地壳俯冲的潜在影响是该模型的结果与该偏斜向高地层位置的重新定位是一致的(Pavlis等,2012; Van Avendonk等,2013),无序断层是常见的(Meigs等,2008; Pavlis等,2012),以及楔体内部更深的地壳岩石的挖掘(Enkelmann等,2015)。总而言之,我们的发现表明,冰川侵蚀,构造沉积和厚壳俯冲作用可能对冰川收敛边缘的结构形态产生重大影响。

著录项

  • 作者

    Davis, Kimberle.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Geology.
  • 学位 M.S.
  • 年度 2015
  • 页码 112 p.
  • 总页数 112
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号