首页> 外文学位 >Simulation of Laser Additive Manufacturing and its Applications.
【24h】

Simulation of Laser Additive Manufacturing and its Applications.

机译:激光增材制造的仿真及其应用。

获取原文
获取原文并翻译 | 示例

摘要

Laser and metal powder based additive manufacturing (AM), a key category of advanced Direct Digital Manufacturing (DDM), produces metallic components directly from a digital representation of the part such as a CAD file. It is well suited for the production of high-value, customizable components with complex geometry and the repair of damaged components.;Currently, the main challenges for laser and metal powder based AM include the formation of defects (e.g., porosity), low surface finish quality, and spatially non-uniform properties of material. Such challenges stem largely from the limited knowledge of complex physical processes in AM especially the molten pool physics such as melting, molten metal flow, heat conduction, vaporization of alloying elements, and solidification. Direct experimental measurement of melt pool phenomena is highly difficult since the process is localized (on the order of 0.1 mm to 1 mm melt pool size) and transient (on the order of 1 m/s scanning speed). Furthermore, current optical and infrared cameras are limited to observe the melt pool surface. As a result, fluid flows in the melt pool, melt pool shape and formation of sub-surface defects are difficult to be visualized by experiment. On the other hand, numerical simulation, based on rigorous solution of mass, momentum and energy transport equations, can provide important quantitative knowledge of complex transport phenomena taking place in AM.;The overarching goal of this dissertation research is to develop an analytical foundation for fundamental understanding of heat transfer, molten metal flow and free surface evolution. Two key types of laser AM processes are studied: a) powder injection, commonly used for repairing of turbine blades, and b) powder bed, commonly used for manufacturing of new parts with complex geometry.;In the powder injection simulation, fluid convection, temperature gradient (G), solidification rate (R) and melt pool shape are calculated using a heat transfer and fluid flow model, which solves the mass, momentum and energy transport equations using the volume of fluid (VOF) method. These results provide quantitative understanding of underlying mechanisms of solidification morphology, solidification scale and deposit side bulging. In particular, it is shown that convective mixing alters solidification conditions (G and R), cooling trend and resultant size of primary dendrite arm spacing. Melt pool convexity in multiple layer LAM is associated not only with the convex shape of prior deposit but also with Marangoni flow. Lastly, it is shown that the lateral width of bulge is possibly controlled by the type of surface tension gradient.;It is noted that laser beam spot size in the powder injection AM is about 2 mm and it melts hundreds of powder particles. Hence, the injection of individual particles is approximated by a lumped mass flux into the molten pool. On the other hand, for laser powder bed AM, the laser beam spot size is about 100 microm and thus it only melts a few tens of particles. Therefore, resolution of individual powder particles is essential for the accurate simulation of laser powder bed AM.;To obtain the powder packing information in the powder bed, dynamic discrete element simulation (DEM) is used. It considers particle-particle interactions during packing to provide the quantitative structural powder bed properties such as particle arrangement, size and packing density, which is then an inputted as initial geometry for heat transfer and fluid flow simulation. This coupled 3D transient transport model provides a high spatial resolution while requiring less demanding computation. The results show that negatively skewed particle size distribution, faster scanning speed, low power and low packing density worsen the surface finish quality and promote the formation of balling defects.;Taken together, both powder injection and powder bed models have resulted in an improved quantitative understanding of heat transfer, molten metal flow and free surface evolution. Furthermore, the analytical foundation that is developed in this dissertation provides the temperature history in AM, a prerequisite for predicting the solid-state phase transformation kinetics, residual stresses and distortion using other models. Moreover, it can be integrated with experimental monitoring and sensing tools to provide the capability of controlling melt pool shape, solidification microstructure, defect formation and surface finish.
机译:基于激光和金属粉末的增材制造(AM)是高级直接数字制造(DDM)的关键类别,它直接从零件的数字表示形式(例如CAD文件)中生产金属零件。它非常适合于生产具有复杂几何形状的高价值,可定制的组件以及修复受损的组件。;当前,基于激光和金属粉末的增材制造的主要挑战包括缺陷的形成(例如,孔隙率),低表面材料的表面光洁度和空间不均匀特性。这些挑战主要是由于对增材制造中复杂的物理过程的了解有限,尤其是熔池物理学,例如熔化,熔融金属流动,热传导,合金元素的汽化和凝固。由于该过程是局部化的(大约在0.1 mm到1 mm的熔池大小)和瞬态的(大约1 m / s的扫描速度),因此直接实验测量熔池现象非常困难。此外,当前的光学和红外摄像机仅限于观察熔池表面。结果,流体难以在熔池中流动,熔池形状和表面缺陷的形成,无法通过实验观察到。另一方面,基于质量,动量和能量传输方程的严格解的数值模拟可以提供重要的定量信息,以了解发生在AM中的复杂的传输现象。基本了解传热,熔融金属流动和自由表面演变。研究了两种关键类型的激光AM工艺:a)粉末注射,通常用于维修涡轮叶片; b)粉末床,通常用于制造具有复杂几何形状的新零件。;在粉末注射模拟中,流体对流,使用传热和流体流动模型计算温度梯度(G),凝固速率(R)和熔池形状,该模型使用流体体积(VOF)方法求解质量,动量和能量传输方程。这些结果提供了对凝固形态,凝固规模和沉积物侧面膨胀的潜在机制的定量理解。特别地,显示出对流混合改变了凝固条件(G和R),冷却趋势以及最终枝晶臂间距的大小。多层LAM中的熔池凸度不仅与先验沉积物的凸形有关,而且还与Marangoni流有关。最后,显示出凸起的横向宽度可能由表面张力梯度的类型控制。注意,粉末注射剂AM中的激光束光斑大小约为2 mm,它熔化了数百个粉末颗粒。因此,单个颗粒的注入可以通过集总的通量进入熔池进行估算。另一方面,对于激光粉末床AM,激光束光斑尺寸约为100微米,因此它仅熔化几十个颗粒。因此,单个粉末颗粒的分辨率对于精确模拟激光粉末床AM是必不可少的。为了获得粉末床中的粉末堆积信息,使用了动态离散元模拟(DEM)。它考虑了填料过程中的颗粒间相互作用,以提供定量的结构性粉末床特性,例如颗粒排列,尺寸和堆积密度,然后将其输入为热传递和流体流动模拟的初始几何形状。这种耦合的3D瞬态传输模型可提供较高的空间分辨率,同时要求较少的计算。结果表明,负偏斜的粒径分布,更快的扫描速度,低功率和低堆积密度会降低表面光洁度质量并促进形成球化缺陷。;加在一起,粉末注射和粉末床模型都改善了定量了解热传递,熔融金属流动和自由表面演变。此外,本文开发的分析基础提供了AM中的温度历史记录,这是使用其他模型预测固态相变动力学,残余应力和变形的先决条件。此外,它可以与实验监测和传感工具集成在一起,以提供控制熔池形状,凝固微结构,缺陷形成和表面光洁度的功能。

著录项

  • 作者

    Lee, Yousub.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Condensed matter physics.;Materials science.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 216 p.
  • 总页数 216
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号