首页> 外文学位 >Investigation of general-purpose computing on graphics processing units and its application to the finite element analysis of electromagnetic problems.
【24h】

Investigation of general-purpose computing on graphics processing units and its application to the finite element analysis of electromagnetic problems.

机译:图形处理单元上通用计算的研究及其在电磁问题的有限元分析中的应用。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation, the hardware and API architectures of GPUs are investigated, and the corresponding acceleration techniques are applied on the traditional frequency domain finite element method (FEM), the element-level time-domain methods, and the nonlinear discontinuous Galerkin method. First, the assembly and the solution phases of the FEM are parallelized and mapped onto the granular GPU processors. Efficient parallelization strategies for the finite element matrix assembly on a single GPU and on multiple GPUs are proposed. The parallelization strategies for the finite element matrix solution, in conjunction with parallelizable preconditioners are investigated to reduce the total solution time. Second, the element-level dual-field domain decomposition (DFDD-ELD) method is parallelized on GPU. The element-level algorithms treat each finite element as a subdomain, where the elements march the fields in time by exchanging fields and fluxes on the element boundary interfaces with the neighboring elements. The proposed parallelization framework is readily applicable to similar element-level algorithms, where the application to the discontinuous Galerkin time-domain (DGTD) methods show good acceleration results. Third, the element-level parallelization framework is further adapted to the acceleration of nonlinear DGTD algorithm, which has potential applications in the field of optics. The proposed nonlinear DGTD algorithm describes the third-order instantaneous nonlinear effect between the electromagnetic field and the medium permittivity. The Newton-Raphson method is incorporated to reduce the number of nonlinear iterations through its quadratic convergence. Various nonlinear examples are presented to show the different Kerr effects observed through the third-order nonlinearity. With the acceleration using MPI+GPU under large cluster environments, the solution times for the various linear and nonlinear examples are significantly reduced.
机译:本文研究了GPU的硬件和API架构,并将相应的加速技术应用于传统的频域有限元法,单元级时域法和非线性不连续Galerkin法。首先,将FEM的组装和解决方案阶段并行化并映射到粒度GPU处理器上。提出了在单个GPU和多个GPU上进行有限元矩阵组装的高效并行化策略。结合有限元可并行预处理器,研究了有限元矩阵求解的并行化策略,以减少总求解时间。其次,在GPU上并行化元素级双场域分解(DFDD-ELD)方法。元素级算法将每个有限元素视为一个子域,其中元素通过与相邻元素交换元素边界界面上的场和通量来及时行进场。所提出的并行化框架很容易适用于类似的元素级算法,其中对不连续Galerkin时域(DGTD)方法的应用显示出良好的加速效果。第三,元素级并行化框架进一步适应了非线性DGTD算法的加速,在光学领域具有潜在的应用。提出的非线性DGTD算法描述了电磁场和介质介电常数之间的三阶瞬时非线性效应。引入了牛顿-拉夫森方法,以通过二次收敛减少非线性迭代的次数。给出了各种非线性示例,以显示通过三阶非线性观察到的不同Kerr效应。通过在大型群集环境下使用MPI + GPU进行加速,可以大大减少各种线性和非线性示例的求解时间。

著录项

  • 作者

    Meng, Huan-Ting.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Electrical engineering.;Computer science.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 124 p.
  • 总页数 124
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号