首页> 外文学位 >Effects of physical and chemical heterogeneities on transport and reaction processes in porous media.
【24h】

Effects of physical and chemical heterogeneities on transport and reaction processes in porous media.

机译:物理和化学异质性对多孔介质中运输和反应过程的影响。

获取原文
获取原文并翻译 | 示例

摘要

We experimentally and numerically investigated the effect of chemical and physical heterogeneity on fluid flow, transport and reaction in porous media. We also proposed a new reactive transport model to simulate the soil formation process from Marcellus shale parent rock, which helped us in determining the key controlling parameters of the mineral dissolution and precipitation processes in natural settings.;In order to determine how physical heterogeneity structure, in particular correlation length, controls flow and solute transport, we used non-reactive solute transport in two-dimensional (2D) sand boxes (21.9 cm by 20.6 cm) and four modeling approaches, including 2D Advection-Dispersion Equation (ADE) with explicit heterogeneity structure, 1D ADE with average properties, and non-local Continuous Time Random Walk (CTRW) and fractional ADE (fADE). The goal of the physical heterogeneity part of the work was to answer two questions: 1) How and to what extent does correlation length control effective permeability and breakthrough curves (BTC)? 2) Which model can best reproduce data under what conditions? Sand boxes were packed with the same 20% (v/v) fine and 80% (v/v) coarse sands in three patterns that differ in correlation length. The Mixed cases contained uniformly distributed fine and coarse grains. The Four-zone and One-zone cases had four and one square fine zones, respectively. A total of 7 experiments were carried out with permeability variance of 0.10 (LC), 0.22 (MC), and 0.43 (HC). Experimental data show that the BTC curves depend strongly on correlation length, especially in the HC cases. The HC One-zone (HCO) case shows distinct breakthrough steps arising from fast advection in the coarse zone, slow advection in the fine zone, and slow diffusion, while the LCO and MCO BTCs do not exhibit such behavior. With explicit representation of heterogeneity structure, 2D ADE reproduces BTCs well in all cases. CTRW reproduces temporal moments with smaller deviation from data than fADE in all cases except HCO, where fADE has the lowest deviation.;Well-mixed batch reactor reaction rate studies result in high dissolution rates, which are usually up to five orders of magnitude greater than field-scale rates. In the natural subsurface, solid materials of different properties are distributed unevenly with various spatial patterns. Numerous factors have been examined to explain the discrepancies between well-mixed laboratory rates and those measured in fields. Parameters such as chemical and physical heterogeneities, velocity, and flow distribution are commonly ignored in the well-mixed batch reactor rate measurements. Some modeling studies have shown that spatial distribution of minerals in porous media affects large-scale mineral dissolution. Experimental studies on the effect of spatial pattern of distribution of chemical heterogeneity on mineral dissolution reaction rate are scarce except for a few studies on magnesite dissolution rates. Large-scale dissolution rates can be affected by both physical and chemical heterogeneities.;In the chemical heterogeneity part of the study we examined the effect of calcite spatial distribution on its dissolution rate under various flow velocities and permeability contrast conditions. Dissolution data of reactive fluid flow (pH=4) through two-dimensional (2D) flow cells (20.0 cm by 20.0 cm) was collected. The flow cells were packed with the same amount of calcite and sand with Mixed and One-zone patterns. The Mixed case contained uniformly distributed calcite and sand grains while the One-zone case had one square calcite zone in the middle of the flow cell. The experiments were carried out at three flow rates (1.435, 7.175, 14.35 m/d) and the dissolution process was simulated using reactive transport modeling. In addition to velocity, effect of parameters such as permeability ratio (calcite permeability/sand permeability), and transverse dispersivity on calcite dissolution were examined numerically. The goal of this part of the study was to answer the following questions: 1) What is the extent of the effect of physical and chemical heterogeneities on mineral dissolution? 2) What are the parameters that control significance of mineral spatial pattern on overall dissolution?;To understand controls of geochemical reaction rates in natural systems, we modeled soil formation from Marcellus shale parent rock using reactive transport modeling with laboratory measured rate laws. Marcellus Shale is a black shale formation that is rich in organic matter and pyrite. The dissolution of Marcellus shale can lead to release of heavy metals and cause significant environment problems, especially with the extensive use of hydraulic fracturing during the production of natural gas. Here, we use soil formation and aqueous geochemistry data as constraints to understand the processes and develop a reactive transport model during Marcellus shale weathering. The simulation was carried out from approximately 10,000 years ago when the formation was first exposed after the last glacier to the present time. (Abstract shortened by UMI.).
机译:我们通过实验和数值研究了化学和物理异质性对多孔介质中流体流动,传输和反应的影响。我们还提出了一种新的反应性输运模型,以模拟马塞勒斯页岩母岩的土壤形成过程,这有助于我们确定自然环境中矿物溶解和降水过程的关键控制参数。为了确定物理异质性结构,在特定的相关长度,控制流量和溶质运移方面,我们在二维(2D)沙箱(21.9 cm x 20.6 cm)中使用了非反应性溶质运移,并采用了四种建模方法,包括具有显式的二维对流扩散方程(ADE)异质性结构,具有平均属性的一维ADE以及非本地连续时间随机游走(CTRW)和分数ADE(fADE)。这项工作的物理异质性部分的目的是回答两个问题:1)相关长度如何以及在何种程度上控制有效渗透率和突破曲线(BTC)? 2)哪种模型可以在什么条件下最好地再现数据?沙箱中填充了相同的20%(v / v)细粉和80%(v / v)的粗砂,它们具有三种相关长度不同的图案。混合箱包含均匀分布的细颗粒和粗颗粒。四区和一区案件分别有四个和一个正方形的罚款区。总共进行了7个实验,渗透率方差分别为0.10(LC),0.22(MC)和0.43(HC)。实验数据表明,BTC曲线在很大程度上取决于相关长度,尤其是在HC情况下。 HC一区(HCO)案例显示出不同的突破步骤,这是由粗区中的快速对流,细区中的对流缓慢和扩散缓慢引起的,而LCO和MCO BTC则没有这种行为。通过明确表示异质性结构,二维ADE在所有情况下都能很好地再现BTC。在所有情况下,CTRW再现的瞬时矩与数据的偏差都比fADE小,但HCO除外,其中fADE的偏差最小;充分混合的分批反应器反应速率研究得出较高的溶出速率,通常比溶出速率高五个数量级现场比例费率。在天然地下,具有不同性质的固体材料不均匀地分布着各种空间图案。已经检查了许多因素来解释充分混合的实验室费率和田间测量的费率之间的差异。在良好混合的间歇反应器速率测量中,通常忽略诸如化学和物理非均质性,速度和流量分布之类的参数。一些建模研究表明,多孔介质中矿物的空间分布会影响大规模矿物溶解。除了少数关于菱镁矿溶解速率的研究以外,关于化学异质性分布的空间格局对矿物溶解反应速率影响的实验研究很少。大规模溶出速率可能受到物理和化学非均质性的影响。在化学非均质性部分,我们研究了方解石空间分布在各种流速和渗透率对比条件下对其溶出速率的影响。收集通过二维(2D)流通池(20.0 cm x 20.0 cm)的反应性流体流(pH = 4)的溶解数据。流动池中充满了相同数量的方解石和沙子,呈混合和一区模式。混合情况包含方解石和沙粒均匀分布,而一区情况在流通池中间有一个方解石区域。实验以三种流速(1.435、7.175、14.35 m / d)进行,并使用反应性传输模型模拟了溶解过程。除速度外,还数值研究了渗透率(方解石渗透率/砂渗透率)和横向分散度等参数对方解石溶解的影响。本部分研究的目的是回答以下问题:1)物理和化学非均质性对矿物溶解的影响程度如何? 2)什么参数控制着矿物空间格局对整体溶解的意义?;为了理解自然系统中地球化学反应速率的控制,我们使用反应速率输运模型和实验室测得的速率定律对马塞勒斯页岩母岩的土壤形成进行了建模。马塞勒斯页岩是一种黑色页岩地层,富含有机物和黄铁矿。 Marcellus页岩的溶解会导致重金属的释放并引起严重的环境问题,特别是在天然气生产过程中广泛使用水力压裂技术的情况下。这里,我们以土壤形成和含水地球化学数据为约束条件来理解过程,并在Marcellus页岩风化过程中建立反应性传输模型。该模拟是在大约10,000年前进行的,当时最后一个冰川之后的地层首次暴露到现在。 (摘要由UMI缩短。)。

著录项

  • 作者

    Heidari, Peyman.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Petroleum engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 146 p.
  • 总页数 146
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号