首页> 外文学位 >Variation of electron and ion density distribution along Earth's magnetic field line deduced from whistler mode (wm) sounding of image/rpi satellite below altitude 5000 km.
【24h】

Variation of electron and ion density distribution along Earth's magnetic field line deduced from whistler mode (wm) sounding of image/rpi satellite below altitude 5000 km.

机译:从海拔5000 km以下的图像/ rpi卫星的啸叫模式(wm)测深推导出,沿着地球磁场线的电子和离子密度分布的变化。

获取原文
获取原文并翻译 | 示例

摘要

This thesis provides a detailed survey and analysis of whistler mode (WM) echoes observed by IMAGE/RPI satellite during the years 2000-2005 below the altitude of 5000 km. Approximately 2500 WM echoes have been observed by IMAGE during this period. This includes mostly specularly reflected whistler mode (SRWM) echoes and ~400 magnetospherically reflected whistler mode (MRWM) echoes. Stanford 2D raytracing simulations and the diffusive equilibrium density model have been applied to 82 cases of MRWM echoes, observed during August-December of the year 2005 below 5000 km to determine electron and ion density measurements along Earth's magnetic field line. These are the first results of electron and ion density measurements from WM sounding covering L-shells ~1.6-4, a wide range of geomagnetic conditions (Kp 0+ to 7), and during solar minima (F10.2~70-120) in the altitude range 90 km to 4000 km. The electron and ion density profiles obtained from this analysis were compared with in situ measurements on IMAGE (passive recording; electron density (Ne)), DMSP (~850 km; Ne and ions), CHAMP (~350 km; Ne), Alouette (~500-2000 km; Ne and ions), ISIS-1, 2 (~600-3500 km; Ne, ions), AE (~130-2000 km; ions) satellites, bottom side sounding from nearby ionosonde stations (Ne), and those by GCPM (Global Core Plasma Model), IRI-2012 (International Reference Ionosphere). Based on this analysis it is found that: (1) Ne shows a decreasing trend from L-shell 1.6 to 4 on both the day and night sides of the plasmasphere up to altitude ~1000 km, which is also confirmed by the GCPM and IRI-2012 model. (2) Above ~2000 km altitude, GCPM underestimates Ne by ~30-90% relative to RPI passive measurements, WM sounding results. (3) Below 1500 km, the Ne is higher at day side than night side MLT (Magnetic Local Time). Above this altitude, significant MLT dependence of electron density is not seen. (4) Ion densities from WM sounding measurements are within 10-35% of those from the Alouette, AE, and DMSP satellites. (5) The effective ion mass in the day side is more than two times higher than night side below altitude ~500 km. (6) The O+/H+ and O+/(H ++He+) transition heights at day side are ~300-500 km higher than night side; the transition heights from the IRI-2012 model lie within the uncertainty limit of WM sounding for night side, but for day side (L-shell>2.5) they are 200 km higher than WM uncertainty limits. (7) foF2 (F2 peak plasma densities) from ionosonde stations and the IRI-2012 model are ~1.5-3 MHz higher than those from WM sounding during daytime. These measurements are very important as the ion density profile along geomagnetic field lines is poorly known. They can lead to a better understanding of global cold plasma distribution inside the plasmasphere at low altitude and thereby bridge the gap between high topside ionosphere and plasmasphere measurements. These results will provide important guidance for the design of future space-borne sounders in terms of frequency and virtual range, in order to adequately cover ion density measurements at low altitudes and wide range of MLTs, solar and geophysical conditions.
机译:本文对2000-2005年IMAGE / RPI卫星在海拔5000 km以下的惠斯勒模式回波进行了详细的调查和分析。在此期间,IMAGE观测到大约2500 WM回波。这主要包括镜面反射的惠斯勒模式(SRWM)回波和约400个磁层反射的惠斯勒模式(MRWM)回波。斯坦福2D射线追踪模拟和扩散平衡密度模型已应用于2005年8月至12月在5000公里以下观察到的82例MRWM回波,以确定沿地球磁场线的电子和离子密度测量值。这是WM测深覆盖L壳〜1.6-4,广泛的地磁条件(Kp 0+至7)以及太阳极小时期(F10.2〜70-120)的电子和离子密度测量的最初结果。在90 km至4000 km的海拔范围内。将通过此分析获得的电子和离子密度分布图与IMAGE(被动记录;电子密度(Ne)),DMSP(〜850 km; Ne和离子),CHAMP(〜350 km; Ne),Alouette的原位测量结果进行比较(〜500-2000 km; Ne和离子),ISIS-1、2(〜600-3500 km; Ne,离子),AE(〜130-2000 km;离子)卫星,从附近的离子探空仪台站(Ne )以及GCPM(全球核心等离子体模型),IRI-2012(国际参考电离层)的内容。根据此分析,发现:(1)在高至约1000 km的高空〜1000 km时,Ne在等离子层的昼夜两面都呈现出从L壳层1.6到4的下降趋势。 -2012模型。 (2)在〜2000 km高度以上,相对于RPI被动测量,WM探测结果,GCPM将Ne低估了〜30-90%。 (3)在1500公里以下,Ne在白天比在夜间MLT(磁性当地时间)高。在此高度以上,没有看到MLT对电子密度的明显依赖性。 (4)WM探测得到的离子密度是Alouette,AE和DMSP卫星的离子密度的10-35%。 (5)在海拔约500 km以下,白天的有效离子质量是夜晚的有效离子质量的两倍以上。 (6)白天的O + / H +和O + /(H ++ He +)跃迁高度比夜晚高300-500 km; IRI-2012模型的过渡高度位于夜间WM探测的不确定性极限之内,而对于白天(L壳> 2.5),它们比WM不确定性极限高200 km。 (7)离子探空仪站和IRI-2012模型的foF2(F2峰值血浆密度)比白天WM探测的高约1.5-3 MHz。这些测量非常重要,因为沿地磁场线的离子密度分布图知之甚少。它们可以使人们更好地了解低空等离子层内部的整体冷等离子分布,从而弥合高空顶电离层和等离子层测量之间的差距。这些结果将在频率和虚拟范围方面为将来的太空探测器的设计提供重要指导,以便充分涵盖低海拔和大范围MLT,太阳和地球物理条件下的离子密度测量。

著录项

  • 作者

    Hazra, Susmita.;

  • 作者单位

    University of Alaska Fairbanks.;

  • 授予单位 University of Alaska Fairbanks.;
  • 学科 Physics.;Aeronomy.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 158 p.
  • 总页数 158
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:52:13

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号