首页> 外文学位 >Modeling Within-Plant Water Distribution in Current-Year Shoots of the Climbing Vine Kudzu (Pueraria lobata).
【24h】

Modeling Within-Plant Water Distribution in Current-Year Shoots of the Climbing Vine Kudzu (Pueraria lobata).

机译:模拟攀援藤葛(Pueraria lobata)的当年芽中植物内的水分布。

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this study was to investigate hydraulic limitations associated with long, tall stems. Longer stems may lead to decreased water delivery to leaves due to increased friction against the walls of the conduit, and taller stems lead to decreased water delivery due to increased hydrostatic pressure at greater heights. Leaves that receive less water must close stomata to avoid cavitation, and thus limit uptake and growth rates. Although both of these limitations have been demonstrated to lead to reduced growth in trees, there is evidence that some vines can compensate. I hypothesize that despite growing long stems, kudzu is able to maintain high rates of gas exchange and photosynthesis regardless of leaf position. This is accomplished through hydraulic compensations that manifest in structural changes of the conducting tissue along the pathway.;I observed only a slight (11%) decline in stomatal conductance as expected, but was unable to predict the small decline with height based on structural and hydraulic changes to the vine. Across treatment groups, leaf area increases with path length, so equal water delivery to each leaf would result in less water per unit leaf area to distal leaves, suggesting kudzu does not compensate by adjusting the sapwood to leaf area ratio. To compensate by increasing the driving force, leaf water potential would need to fall below the wilting point. To compensate by decreasing hydraulic resistance, kudzu stems would need to be two orders of magnitude more conductive than measured. Since the total amount of water storage in kudzu based on volume is too small to maintain water supply for 20 minutes, leaves cannot rely on capacitance to compensate for slow delivery through the stem. I am unable to describe the mechanism that allows kudzu to maintain high gas exchange and growth rates in distal leaves.
机译:这项研究的目的是调查与长而高的茎相关的水力限制。较长的茎杆可能会导致对导管壁的摩擦增加,从而导致减少向叶片的水分输送,而较高的茎杆会由于在更高的高度增加静水压力而导致叶片的水分输送减少。水分较少的叶片必须关闭气孔以避免气蚀,从而限制摄取和生长速度。尽管这两个局限性都被证明会导致树木生长减慢,但有证据表明某些藤本植物可以弥补这一缺陷。我推测,尽管茎长了,但葛根无论叶片处于什么位置,都能保持较高的气体交换和光合作用速率。这是通过沿路径的导电组织的结构变化表现出的水力补偿来实现的。我观察到的气孔导度仅按预期略有下降(11%),但无法根据结构和结构预测高程的小幅下降。葡萄树的水力变化。在整个处理组中,叶片面积随路径长度的增加而增加,因此向每片叶片的均等水分输送将导致向远端叶片的每单位叶片面积的水分减少,这表明葛根不能通过调节边材与叶片的面积比来补偿。为了通过增加驱动力进行补偿,叶片水势必须降到萎缩点以下。为了通过减小​​水力阻力进行补偿,葛根的导电性需要比测量值高两个数量级。由于野葛的总储水量(以体积计)太小,无法维持20分钟的供水,因此叶子不能依靠电容来补偿通过茎的缓慢输送。我无法描述允许葛根在远端叶片中维持高气体交换和生长速率的机制。

著录项

  • 作者

    Berghoff, Henry Givan.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Environmental management.;Environmental studies.;Environmental science.
  • 学位 M.S.
  • 年度 2015
  • 页码 59 p.
  • 总页数 59
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:52:03

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号