首页> 外文学位 >Design and analysis of reversible solid oxide cell systems for electrical energy storage.
【24h】

Design and analysis of reversible solid oxide cell systems for electrical energy storage.

机译:用于电能存储的可逆固体氧化物电池系统的设计和分析。

获取原文
获取原文并翻译 | 示例

摘要

Electrical energy storage is projected to be a critical component of the future world energy system, performing load-leveling operations to enable increased penetration of renewable and distributed generation. Reversible solid oxide cell (ReSOC) technology has the potential to play a major role in stationary electrical energy storage markets. ReSOCs operate in two distinct modes: fuel producing (electrolysis mode) and power producing (fuel cell mode). A stand-alone energy storage system is realized from this technology by coupling the two operating modes with intermediate storage of reactant and product species. In this dissertation, ReSOC energy storage systems are designed and analyzed with computational modeling to establish suitable system configurations and operating conditions that achieve high roundtrip efficiency.;A critical feature of the ReSOC system that enables high roundtrip efficiency is that the ReSOC is operated at conditions where methane is generated in electrolysis mode to offset the typically endothermic conversion process. Methanation is promoted by low temperature and high pressure conditions, meaning that intermediate-temperature ReSOCs (<700°C) are important to achieving high system performance. Doped lanthanum gallate (LSGM)-electrolyte ReSOC characteristics are leveraged in this study.;The results include thermodynamic analysis of ReSOC systems, physically-based calibrated modeling of intermediate temperature ReSOCs, steady-state system simulation at distributed (100 kW) and bulk (>10 MW) scales, and bottom-up system costing. System modeling results suggest that dc roundtrip energy storage efficiency of 65-74% are achieved for a 100 kW system. Maximum efficiency is achieved when the tanked species are maintained in the vapor phase to mitigate the energetic requirement of steam generation; although the energy density suffers within this configuration. The bulk scale system achieves 74% roundtrip efficiency at optimal stack operating conditions of 680°C, 20 bar, and 70% fuel utilization. Economic calculations estimate bulk-scale (250 MW / 500 GWh) storage cost of 1.7 ¢/kWh based on the system capital cost. This storage cost is lower than compressed air and battery technologies and comparable to pumped hydro, but improvements in cell technology and additional system simulation and hardware selection must be addressed before commercialization.
机译:电能存储预计将成为未来世界能源系统的重要组成部分,它执行负载均衡操作以提高可再生和分布式发电的渗透率。可逆固体氧化物电池(ReSOC)技术有潜力在固定式电能存储市场中发挥重要作用。 ReSOC以两种不同的模式运行:燃料生产(电解模式)和发电(燃料电池模式)。通过将两种操作模式与反应物和产物种类的中间存储相结合,可以从该技术中实现一个独立的储能系统。本文利用计算模型对ReSOC储能系统进行了设计和分析,以建立合适的系统配置和运行条件以实现高往返效率。; ReSOC系统实现高往返效率的一个关键特征是ReSOC在一定条件下运行其中以电解模式产生甲烷以抵消通常的吸热转化过程。低温和高压条件促进甲烷化,这意味着中温ReSOC(<700°C)对于实现高系统性能很重要。这项研究利用了掺杂的没食子酸镧(LSGM)-电解质ReSOC特性。;结果包括ReSOC系统的热力学分析,中温ReSOC的基于物理的校准模型,分布式(100 kW)的稳态系统仿真和批量( > 10 MW)规模,以及自下而上的系统成本。系统建模结果表明,对于100 kW系统,直流往返能量存储效率达到65-74%。当将罐装物保持在气相中以减轻蒸汽产生的能量需求时,可实现最大效率。尽管在这种配置下能量密度受到影响。在680°C,20 bar和70%的燃料利用率的最佳烟囱操作条件下,批量秤系统可实现74%的往返效率。经济计算估计,基于系统投资成本,大容量(250 MW / 500 GWh)大规模存储的成本为1.7¢/ kWh。这种存储成本低于压缩空气和电池技术,可与抽水蓄能媲美,但是在商业化之前必须解决电池技术的改进以及额外的系统仿真和硬件选择。

著录项

  • 作者

    Wendel, Christopher H.;

  • 作者单位

    Colorado School of Mines.;

  • 授予单位 Colorado School of Mines.;
  • 学科 Mechanical engineering.;Alternative Energy.;Chemical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 248 p.
  • 总页数 248
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号