首页> 外文学位 >Microstructural control of aluminum/aluminum oxide electrochemistry: Aluminum/aluminum oxide photonic devices.
【24h】

Microstructural control of aluminum/aluminum oxide electrochemistry: Aluminum/aluminum oxide photonic devices.

机译:铝/铝氧化物电化学的微结构控制:铝/铝氧化物光子器件。

获取原文
获取原文并翻译 | 示例

摘要

An electrochemical process which automatically patterns and forms ring electrodes and interconnects while simultaneously burying the electrodes in a thin sheet of aluminum oxide has been demonstrated. Without the assistance of photolithographic patterning or etching techniques, anodization (in 0.3 M oxalic acid at 50 V and 15°C) of aluminum foil (which has previously machined microcavities 50--250 microm in diameter), results in an aluminum oxide film in which an electrode encompasses each microcavity, and planar interconnects between adjacent microcavities are developed. Modulation of the geometry has been achieved by controlling the arrangement of microcavities and the anodization duration, and with in-situ monitoring of the anodic current. Growth stress in the vicinity of a microcavity plays an important role in developing this self-formed buried ring electrode and interconnect. A maximum growth stress of 10.8 GPa was evaluated from the measurement of the porosity of anodic aluminum oxide.;In addition, novel electrochemical fabrication techniques for large scale microcavity arrays and three dimensional microstructures have been developed. Modified anodization processes produce microcavity arrays with controlled cavity inner-wall shapes which are adjustable from vertical to parabolic on the patterned aluminum foil. Anodic current exhibiting unique characteristics is used not only as an in-situ monitor but also as a predictor of the resulting geometries. As an alternative electrochemical etching process, controlled, self-limiting electrochemical etching (in a perchloric acid and ethanol mixture at 30V and 0°C) has been developed. This renders not only control over microcavity geometries from linear (taper) to parabolic, resulting from the diffusion limiting process of electrolyte, but is also faster than the anodization initiated microcavity formation method. The controllability of structural dimensions (such as the top and bottom aperture diameter) with a uniformity of ∼ 3% has been obtained. Finally, a microchannel structure with complex electrode geometries has been fabricated with a high aspect ratio (depth/width) of 2. A minimum channel width and maximum depth have been observed at 40 microm and 80 microm, respectively, with a highly vertical sidewall.;Based on these electrochemical processes, several different types of microcavity plasma devices have been demonstrated for photonic applications, including the stress-free bridge type microcavity plasma devices, a fully addressable microcavity plasma device, and a microchannel plasma device with complex electrode geometries. These microplasma devices exhibit a uniform glow discharge in confined microcavities or microchannels with intense luminance in various rare gases, such as Ne and Ne/Xe mixtures. They produce emission spatially uniform within +/- 5%, an ignition response time of 10 micros for a 20 kHz sinusoidal excitation and 250 ns for a pulsed, unipolar excitation having a temporal width of 4 micros and a frequency of 100 kHz.;The fully addressable microcavity plasma device, fabricated by the combination of modified electrochemical etching and anodization, is the first to be demonstrated. Intense luminance and luminous efficacies approaching 1800 cd/m2 and 4 lm/W, respectively, have been observed for 50 x 50 to 320 x 160 arrays of microplasma devices with parabolic cross-sectional microcavities and conformal aluminum electrodes, operating in Ne/Xe gas mixtures. In addition, a microchannel plasma device with complex electrode geometries have been fabricated in a single sheet of aluminum foil with an active area of over 30 cm 2. Power consumption as low as 0.8 W with a luminance of 500 cd/m 2 has been observed in 600 Torr of Ne. These devices are promising for advanced displays and backlighting technology.
机译:已经证明了一种电化学方法,该方法可以自动构图并形成环形电极和互连,同时将电极掩埋在氧化铝薄片中。在没有光刻图案化或蚀刻技术的帮助下,铝箔(先前已加工过的微腔直径为50--250微米)的阳极氧化(在50 V和15°C的0.3 M草酸中)会导致铝膜氧化电极包围每个微腔,并在相邻微腔之间形成平面互连。通过控制微腔的布置和阳极氧化的持续时间,并通过阳极电流的现场监测,可以实现几何形状的调制。微腔附近的生长应力在发展这种自形成的埋入式环形电极和互连中起着重要作用。通过测量阳极氧化铝的孔隙率,可以估算出最大的生长应力为10.8 GPa。此外,还开发了用于大型微腔阵列和三维微观结构的新型电化学制造技术。改进的阳极氧化工艺可生产出具有可控腔内壁形状的微腔阵列,可在图案化铝箔上从垂直调整为抛物线形。表现出独特特性的阳极电流不仅用作现场监测器,而且还用作结果几何形状的预测器。作为一种可选的电化学蚀刻工艺,已开发出可控的,自限性的电化学蚀刻(在30V和0°C的高氯酸和乙醇混合物中)。这不仅可以控制由于电解质的扩散限制过程而导致的从线性(锥度)到抛物线形的微腔几何形状,而且比阳极氧化引发的微腔形成方法要快。结构尺寸(例如顶部和底部孔径)的可控性已达到约3%的均匀性。最后,已经制造出具有复杂电极几何形状的微通道结构,其高深宽比(深度/宽度)为2。在高度垂直的侧壁上,分别在40微米和80微米处观察到最小通道宽度和最大深度。基于这些电化学过程,已经证明了几种不同类型的微腔等离子体设备用于光子应用,包括无应力桥式微腔等离子体设备,完全可寻址的微腔等离子体设备以及具有复杂电极几何形状的微通道等离子体设备。这些微等离子体装置在封闭的微腔或微通道中显示均匀的辉光放电,在各种稀有气体(例如Ne和Ne / Xe混合物)中具有强烈的亮度。它们在+/- 5%的范围内产生空间均匀的发射,对于20 kHz正弦激励,点火响应时间为10微秒,对于时间宽度为4 micros,频率为100 kHz的脉冲单极激励,响应时间为250 ns。首次展示了通过改进的电化学蚀刻和阳极氧化相结合制造的可完全寻址的微腔等离子体设备。对于在Ne / Xe气体中工作的具有抛物线形横截面微腔和共形铝电极的50 x 50至320 x 160的微等离子体装置阵列,已经观察到强烈的亮度和发光效率分别接近1800 cd / m2和4 lm / W。混合物。另外,具有复杂电极几何形状的微通道等离子体装置已经用一块铝箔制成,有效面积超过30 cm2。观察到的功耗低至0.8 W,亮度为500 cd / m 2。在Ne的600 Torr中这些设备有望用于先进的显示器和背光技术。

著录项

  • 作者

    Kim, Kwang Soo.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 138 p.
  • 总页数 138
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号