首页> 外文学位 >Numerical and experimental characterisation of convective transport in solid oxide fuel cells.
【24h】

Numerical and experimental characterisation of convective transport in solid oxide fuel cells.

机译:固体氧化物燃料电池中对流输运的数值和实验表征。

获取原文
获取原文并翻译 | 示例

摘要

In this work, numerical and experimental methods are used to characterise the effects of convective transport in an anode-supported tubular solid oxide fuel cell (SOFC). To that end, a computational fluid dynamics (CFD) model is developed to compare a full transport model to one that assumes convection is negligible. Between these two approaches, the variations of mass, temperature, and electrochemical performance are compared. Preliminary findings show that convection serves to reduce the penetration of hydrogen into the anode, and becomes more important as the thickness of the anode increases.;The importance of the permeability of SOFC electrodes on the characterization of convection is also investigated. Experiments performed on Ni-YSZ anodes reveal that permeability is a function of the cell operating conditions, and increases with increasing Knudsen number. An empirical Klinkenberg relation is validated and proposed to more accurately represent the permeability of electrodes in a CFD model. This is a departure from an assumption of constant permeability that is often seen in the literature. It is found that a varying permeability has significant effects on pressure variation in the cell, although according to the electrochemical model developed in this work, variation in permeability is only found to have minor effects on the predicted performance.;Furthermore, it is revealed that an electrochemical model which makes the simplifying assumption of constant overpotential is in error when predicting current and temperature variation. In this work, this is found to predict an unrealistic spatial variation of the current. It is suggested that this approach be abandoned for the solution of a transport equation for potential which couples the anodic and cathodic currents. This will lead to a more realistic prediction of temperature and performance.
机译:在这项工作中,使用数值和实验方法来表征阳极支撑的管状固体氧化物燃料电池(SOFC)中对流传输的影响。为此,开发了一种计算流体动力学(CFD)模型,以将完整的输运模型与假定对流可忽略的模型进行比较。在这两种方法之间,比较了质量,温度和电化学性能的变化。初步发现表明,对流起到减少氢渗透到阳极的作用,并且随着阳极厚度的增加而变得越来越重要。;还研究了SOFC电极的渗透性对对流特性的重要性。在Ni-YSZ阳极上进行的实验表明,磁导率是电池工作条件的函数,并随Knudsen数的增加而增加。验证并提出经验Klinkenberg关系,以更准确地表示CFD模型中电极的磁导率。这与文献中经常看到的恒定渗透率的假设背道而驰。已经发现,变化的渗透率对电池中的压力变化有显着影响,尽管根据这项工作开发的电化学模型,发现渗透率的变化仅对预测性能有较小的影响。当预测电流和温度变化时,使恒定超电势的简化假设简化的电化学模型是错误的。在这项工作中,发现这可以预测电流的不切实际的空间变化。建议将该方法用于耦合阳极电流和阴极电流的势能的输运方程的求解。这将导致对温度和性能的更实际的预测。

著录项

  • 作者

    Resch, Emmanuel.;

  • 作者单位

    Queen's University (Canada).;

  • 授予单位 Queen's University (Canada).;
  • 学科 Engineering Mechanical.
  • 学位 M.Sc.
  • 年度 2009
  • 页码 161 p.
  • 总页数 161
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

  • 入库时间 2022-08-17 11:37:54

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号