首页> 外文学位 >Mechanical deformation and radiation damage of face-centered-cubic metallic nanowires.
【24h】

Mechanical deformation and radiation damage of face-centered-cubic metallic nanowires.

机译:面心立方金属纳米线的机械变形和辐射损伤。

获取原文
获取原文并翻译 | 示例

摘要

Nanowires have received intensive attention in the past decades due to their potential applications in future nanotechnology. The small lateral size and large free surface area of nanowires lead to many unique properties compared to their bulk counterparts. Focusing on face-centered-cubic (FCC) metallic nanowires, this thesis studies mechanical properties of nanowires and the effect of radiation damage in nanowires using molecular dynamics simulations. As a starting point the mechanical properties of twinned copper nanowires are studied, and then the method to generate twin boundaries into nanowires using energetic beams is proposed and demonstrated. The defect evolution in nanocrystalline copper is studied as well to investigate the grain size effect.;Molecular dynamics simulations reveal that twin boundaries do not always strengthen FCC metallic nanowires; whether or not the strengthening takes place depends on the necessary stress required for dislocation nucleation, which in turn depends on the nanowire surface morphology. In nanowires with circular cross-sections, the stress needed for dislocation nucleation is high and dictates the yield strength. The introduction of twin boundaries slightly lowers the dislocation nucleation stress and weakens nanowires. In nanowires with square cross-sections, the presence of sharp edges reduces the stress for dislocation nucleation. The reduced dislocation nucleation stress is not high enough to drive dislocation penetration through twin boundaries, resulting in strengthening effect.;A method to introduce twin boundaries into copper nanowires using energetic beams is proposed. Upon radiation, the local region of a Cu nanowire will melt, and the molten zone recrystallizes after the radiation stops. At the solid-liquid interface, atoms may follow FCC or hexagonal-close-packed (HCP) stacking. Once a twin boundary (i.e., an HCP layer) nucleates, it tends to grow. Within a nanowire, the twin boundary can easily expand across the entire cross-section and becomes stable. The demonstration starts with the ion radiation in copper nanowires. With increasing PKA energy, the defect production under ion radiation corresponds to ballistic collision, surface viscous flow and self-organization. The corresponding defect structures are dispersed point defects, dislocation loops and twin boundaries, respectively. Subsequent electron radiation simulations show that the formation of twin boundaries is due to the thermal melting and completes in three steps: nucleation of HCP layer, growth of the HCP layer, and interaction of nearby HCP layers. This twinning method offers a new mechanism of improving the mechanical strength of metallic nanowires.;A crossover behavior is predicted in the grain size dependence of defect production in nanocrystalline copper under radiation. With the same number of defects produced, the resulted vacancy concentration first increases and then decreases with increasing grain size. The smaller the grain size, the higher the sink strength of grain boundaries is and the more vacancies are absorbed by grain boundaries. On the other hand, more SIAs survive with larger grain size in the form of clusters, which recombine with vacancies and lead to lower vacancy concentration. The competition between grain boundary absorption and recombination of vacancies with SIA clusters results in the crossover behavior.;To summarize, the molecular dynamics simulation studies in this thesis demonstrated unique properties of copper nanowires, including: (1) surface morphology dependent twin boundary strengthening effect (Y. F. Zhang and H. C. Huang, nanoscale research letters 4, 34 (2009)), (2) yield strength asymmetry (Y. F. Zhang, H. C. Huang and S. N. Atluri, CMES 35, 215 (2008)), (3) radiation induced twin formation (Y. F. Zhang and H. C. Huang, Submitted), and (4) Crossover behavior in the grain size dependence of defect accumulation in nanocrystalline copper. The collection of these results enhances the understanding of the properties of FCC metallic nanowires and guides the future applications of nanowires.
机译:由于纳米线在未来纳米技术中的潜在应用,在过去的几十年中受到了广泛的关注。纳米线的横向尺寸小和自由表面积大,与它们的整体相比,具有许多独特的性能。本文以面心立方(FCC)金属纳米线为研究对象,通过分子动力学模拟研究了纳米线的力学性能以及纳米线中辐射损伤的影响。首先,研究了孪晶铜纳米线的力学性能,然后提出并证明了利用高能束将孪晶边界生成纳米线的方法。还研究了纳米晶铜中的缺陷演化,以研究晶粒尺寸的影响。;分子动力学模拟表明,孪晶边界并不总是能增强FCC金属纳米线。是否发生强化取决于位错成核所需的必要应力,而应力又取决于纳米线的表面形态。在具有圆形横截面的纳米线中,位错成核所需的应力很高,并决定了屈服强度。孪晶边界的引入会稍微降低位错成核应力并削弱纳米线。在具有正方形横截面的纳米线中,尖锐边缘的存在降低了位错成核的应力。位错成核应力的降低不足以驱使位错穿过孪晶边界,从而产生增强效果。提出了一种利用高能束将孪晶边界引入铜纳米线的方法。在辐射时,Cu纳米线的局部区域将熔化,并且在辐射停止后,熔融区会重结晶。在固液界面处,原子可能遵循FCC或六方密堆积(HCP)堆叠。一旦孪生边界(即HCP层)成核,它就会趋于增长。在纳米线内,孪晶边界可以轻松地在整个横截面上扩展并变得稳定。演示从铜纳米线中的离子辐射开始。随着PKA能量的增加,在离子辐射下产生的缺陷对应于弹道碰撞,表面粘性流动和自组织。相应的缺陷结构分别是分散点缺陷,位错环和孪晶边界。随后的电子辐射模拟表明,孪晶边界的形成是由于热熔融而完成的,分三个步骤完成:HCP层的成核,HCP层的生长以及附近HCP层的相互作用。这种孪生方法为提高金属纳米线的机械强度提供了新的机制。预测了在辐射下纳米晶铜中缺陷产生的晶粒尺寸依赖性的交叉行为。在产生相同数量的缺陷的情况下,所产生的空位浓度首先随着晶粒尺寸的增加而增加,然后降低。晶粒尺寸越小,晶界的沉陷强度越高,晶界吸收的空位越多。另一方面,更多的SIA以簇的形式以较大的晶粒尺寸存活,这与空位重新结合并导致较低的空位浓度。晶界吸收和空位与SIA簇的重组之间的竞争导致了交叉行为。综上所述,本文的分子动力学模拟研究证明了铜纳米线的独特性质,包括:(1)依赖表面形态的孪晶边界强化效应(YF Zhang和HC Huang,纳米级研究信4,4,34(2009)),(2)屈服强度不对称(YF Zhang,HC Huang和SN Atluri,CMES 35,215(2008)),(3)辐射诱导孪生形成(YF Zhang和HC Huang,提交),以及(4)纳米晶铜中缺陷积累的晶粒尺寸依赖性的交叉行为。这些结果的收集增强了对FCC金属纳米线性能的理解,并指导了纳米线的未来应用。

著录项

  • 作者

    Zhang, Yongfeng.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 104 p.
  • 总页数 104
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号