首页> 外文学位 >Understanding the effects of pressure on biological self-assembly: Role of hydration and water-mediated interactions.
【24h】

Understanding the effects of pressure on biological self-assembly: Role of hydration and water-mediated interactions.

机译:了解压力对生物自组装的影响:水合作用和水介导的相互作用的作用。

获取原文
获取原文并翻译 | 示例

摘要

Pressure has recently emerged as a new and promising dimension to perturb and study the structure, thermodynamics, dynamics, and kinetics of various biological systems. The advances in high pressure experimental techniques and their integration to powerful imaging methods have resulted in an explosion of experimental studies of biology under pressure. A fundamental framework for understanding and predicting effects of pressure on these systems is missing, however. The availability of wealth of experimental data presents a unique opportunity for obtaining new fundamental, molecular level insights through statistical mechanical and computer simulation studies.;Effects of high pressure on globular proteins in solution are particularly intriguing. Instead of being mechanically compressed at high pressures, experiments reveal that proteins unfold into water swollen denatured states! Also, the kinetics of protein folding/unfolding is found to slow down significantly at high pressures. At the multi-protein level, high pressures dissociate complexes (especially those with hydrophobic interfaces). How do we explain these puzzling observations from a fundamental perspective?;We address this problem using a two-pronged approach. At one level, we focus on the pressure-dependent behavior of the fundamental interactions that govern protein stability. We have characterized hydrophobic hydration and interactions, ion hydration, and ion-ion interactions in a broad space of molecular (such as solute lengthscale, strength of solute-water interactions) and thermodynamic parameters (e.g. temperature and pressure). Water-mediated interactions between hydrophobic solutes are weakened with increasing pressure. The pressure sensitivity of these interactions is expected to be dependent on the solute lengthscale. Our results show that water is more compressible around large hydrophobic solutes. This indicates that clusters of larger solutes will dissociate more easily than those of smaller solutes at high pressures. Folded as well as unfolded states of proteins and surfaces of protein complexes contain large hydrophobic patches with different curvatures. Our results have implications on understanding their pressure sensitivity. Pressure response of water-mediated interactions between ions is dependent on the charge density. Although, in general ion-ion interactions are insensitive to pressure, the behavior is different for strongly hydrated ions. Association of strongly charged ions is weakened with increasing pressure. These results suggest that pressure can disrupt protein structure through destabilization of both hydrophobic interactions and salt-bridges.;The second level of our approach comprises detailed molecular simulation studies of realistic protein-water systems. We have developed a method to access pressure unfolded conformations of proteins in simulations, otherwise inaccessible to straightforward molecular simulations. We used this method to generate pressure unfolded conformations of a globular protein, Staphylococcal nuclease (Snase). Using the unfolded conformations of Snase, we estimated the thermodynamic properties associated with pressure denaturation---the change in volume upon unfolding and the Gibbs free energy of unfolding. These calculations clearly show that the volume of unfolding is negative making free energy of unfolding negative, and hence unfolding favorable, at higher pressures. Our two-scale approach comprehensively provides a molecular level framework to understand and predict the behavior of biological systems under pressure.
机译:压力最近已成为一种新的有希望的维度,可以扰动和研究各种生物系统的结构,热力学,动力学和动力学。高压实验技术的进步及其与强大的成像方法的集成,导致了在压力下进行生物学实验研究的爆炸式增长。但是,缺少用于理解和预测压力对这些系统的影响的基本框架。大量实验数据的可用性为通过统计机械和计算机模拟研究获得新的基本分子水平见解提供了独特的机会。高压对溶液中球状蛋白质的影响尤其令人着迷。实验表明,蛋白质不会在高压下被机械压缩,而会展开为水溶胀的变性状态!同样,发现蛋白质折叠/展开的动力学在高压下显着减慢。在多蛋白水平上,高压会使复合物(尤其是具有疏水界面的复合物)解离。我们如何从根本的角度解释这些令人费解的观察结果?;我们使用两个方面的方法解决了这个问题。一方面,我们关注控制蛋白质稳定性的基本相互作用的压力依赖性行为。我们已经在广泛的分子空间(例如溶质长度尺度,溶质-水相互作用的强度)和热力学参数(例如温度和压力)中表征了疏水水合和相互作用,离子水合以及离子-离子相互作用。疏水性溶质之间的水介导相互作用随着压力的增加而减弱。这些相互作用的压力敏感性预计将取决于溶质长度尺度。我们的结果表明,水在较大的疏水性溶质周围更具可压缩性。这表明在高压下,较大溶质的簇比较小溶质的簇更容易解离。蛋白质的折叠状态和未折叠状态以及蛋白质复合物的表面均包含具有不同曲率的大疏水斑块。我们的结果对理解他们的压力敏感性有影响。离子之间水介导的相互作用的压力响应取决于电荷密度。尽管一般而言,离子与离子之间的相互作用对压力不敏感,但对于强水合离子而言,其行为却有所不同。随着压力的增加,强电荷离子的缔合减弱。这些结果表明压力可以通过疏水相互作用和盐桥的失稳破坏蛋白质结构。;我们方法的第二个层次包括对实际蛋白质-水系统的详细分子模拟研究。我们已经开发出一种方法来访问模拟中蛋白质的未折叠结构的压力,否则无法进行简单的分子模拟。我们使用这种方法来产生球形蛋白,葡萄球菌核酸酶(Snase)的压力展开构象。利用Snase的展开构象,我们估算了与压力变性相关的热力学性质-展开时的体积变化和展开的吉布斯自由能。这些计算清楚地表明,展开的体积为负,使得展开的自由能为负,因此在较高压力下展开有利。我们的两尺度方法全面地提供了一个分子水平的框架来理解和预测压力下生物系统的行为。

著录项

  • 作者

    Sarupria, Sapna.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 145 p.
  • 总页数 145
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号