首页> 外文学位 >A graph cut framework for two dimensional/three dimensional implicit front propagation with application to the image segmentation problem.
【24h】

A graph cut framework for two dimensional/three dimensional implicit front propagation with application to the image segmentation problem.

机译:用于二维/三维隐式前传播的图割框架及其在图像分割中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Image segmentation is one of the most critical tasks in the fields of image processing and computer vision. It is a preliminary step to several image processing schemes and its robustness and accuracy immediately impact the rest of the scheme. Applicability of image segmentation algorithms varies broadly from tracking in computer games to tumor monitoring and tissue classification in clinics. Over the last couple of decades, formulating the image segmentation as a curve evolution problem has been the state-of-the-art. Research groups have been competing in presenting efficient formulation, robust optimization and fast numerical implementation to solve the curve evolution problem. From another perspective, graph cuts have been gaining popularity over the last decade and its applicability in image processing and computer vision fields is vastly increasing. Recent studies are in favor of combining the benefits of variational formulations of deformable models and the graph cuts optimization tools. In this dissertation, we present a graph cut based framework for front propagation with application to 2D/3D image segmentation.;As a starting point, we will introduce a Graph Cut Based Active Contour (GCBAC) model that serves as a unified framework that combines the advantages of both level sets and graph cuts. Mainly, a discrete formulation of the active contour without edges model introduced by Chan and Vese will be presented. We will prove that the discrete formulation of the energy function is graph representable and can be minimized using the min-cut/max-flow algorithm. The major advantages of our model over that of Chan and Vese are: (1) A global minimum will be obtained because graph cuts are used in the optimization step and hence, our segmentation approach is not sensitive to initialization. (2) The polynomial time complexity of the min-cut/max-flow algorithm makes our algorithm much faster than the level sets approaches. Meanwhile, all the advantages associated with the level sets formulation such as robustness to noise, topology changes and ill-defined edges are preserved. The basic formulation will be presented for 2D scalar images. The GCBAC will be the core of this dissertation upon which extensions will be presented to establish the scalability of the model. Extensions of the model to segment vector valued images such as RGB images and volumetric data such as brain MRI scans will be provided. The dissertation will also present a multiphase image segmentation approach based on GCBAC. Further challenges such as intensities inhomogeneities and shared intensity distributions among different objects will be discussed and resolved in the course of this dissertation. The dissertation will include pictorial results, as well as, quantitative assessments that illustrate the performance of the proposed models.
机译:图像分割是图像处理和计算机视觉领域中最关键的任务之一。这是几种图像处理方案的第一步,其鲁棒性和准确性会立即影响其余方案。图像分割算法的适用范围从计算机游戏中的跟踪到临床中的肿瘤监测和组织分类广泛地变化。在过去的几十年中,将图像分割公式化为曲线演化问题一直是最新技术。研究小组一直在竞争中提出有效的公式化,鲁棒的优化和快速的数值实现来解决曲线演化问题。从另一个角度看,在过去的十年中,图形切割已变得越来越流行,它在图像处理和计算机视觉领域的适用性正在大大提高。最近的研究支持将可变形模型的变式公式化的优点与图形切割优化工具相结合。本文提出了一种基于图割的前端传播框架,并将其应用于2D / 3D图像分割中。首先,我们将介绍基于图割的主动轮廓模型(GCBAC),将其作为一个统一的框架,结合水平集和图形切割的优点。主要将介绍由Chan和Vese引入的无轮廓主动轮廓的离散公式。我们将证明能量函数的离散公式是图形可表示的,并且可以使用最小切割/最大流量算法将其最小化。与Chan和Vese相比,我们的模型的主要优点是:(1)由于在优化步骤中使用了图割,因此将获得全局最小值,因此,我们的分割方法对初始化不敏感。 (2)最小割/最大流算法的多项式时间复杂度使我们的算法比水平集方法快得多。同时,保留了与级别集公式相关的所有优点,例如,对噪声的鲁棒性,拓扑变化和边界不明确的边缘。将为2D标量图像提供基本公式。 GCBAC将是本文的核心,在此基础上将进行扩展以建立模型的可扩展性。将提供模型扩展,以分割矢量值图像(例如RGB图像)和体积数据(例如脑MRI扫描)。论文还将提出一种基于GCBAC的多相图像分割方法。在本文的研究过程中,还将讨论并解决进一步的挑战,例如强度不均匀和不同对象之间共享强度分布。论文将包括图片结果,以及定量评估,以说明所提出模型的性能。

著录项

  • 作者

    El-Zehiry, Noha Youssry.;

  • 作者单位

    University of Louisville.;

  • 授予单位 University of Louisville.;
  • 学科 Applied Mathematics.;Computer Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 144 p.
  • 总页数 144
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:55

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号