首页> 外文学位 >MECHANISMS CONTROLLING THE INORGANIC AND ISOTOPIC GEOCHEMISTRY OF SPRINGS IN A CARBONATE TERRANE.
【24h】

MECHANISMS CONTROLLING THE INORGANIC AND ISOTOPIC GEOCHEMISTRY OF SPRINGS IN A CARBONATE TERRANE.

机译:控制碳酸盐地幔中弹簧的无机和同位素地球化学的机制。

获取原文
获取原文并翻译 | 示例

摘要

The purposes of this investigation were to (1) determine the processes that control temporal variations in the chemistry of springs in a karst terrane, (2) explain the apparent closed-system solution of carbonate minerals in a cavern environment, and (3) determine the sources of recharge to springs in the central Pennsylvania karst. Water samples were collected from a mountain-runoff stream, and from a conduit-fed and a diffuse-fed spring. The variables measured at the three sites were discharge, pH, specific conductance, the major ionic species, (delta)('18)O of the water, and (delta)('13)C of the dissolved carbonate.;The chemistry of the mountain-runoff stream is controlled by dilution, evapotranspiration, and leaching of leaf litter and the products of pyrite oxidation by precipitation. For the conduit-fed spring, variations in water chemistry are controlled by dilution, seasonal fluctuations in soil zone P(,CO(,2)), pollution, and contributions from mountain runoff. The processes that control the variation in the chemistry of the diffuse-fed spring are leaching of salts from the soil zone during storms, solution of carbonate minerals, and evapotranspiration. Discharge is the most important control on water chemistry at all three sites. This results from mixing of waters with different chemical compositions in proportions that depend on flow volume. Seasonal variations are primarily related to evapotranspiration, either directly, through concentration of salts, or indirectly, through a seasonal variation in the availability of water for discharge.;Carbon isotopic compositions of the conduit-fed spring are similar to values predicted by models of calcite solution in the absence of a coexisting gas phase. This indicates most limestone solution occurs in a diffuse flow system fed by percolation recharge. After emergence into the conduit, this diffuse component rapidly equilibrates with the P(,CO(,2) )in the conduit gas phase, but retains its original (delta)('13)C values. Sixty-seven percent of the variation in the calcium concentrations of the conduit-fed spring can be attributed to mixing. An additional 10% of the variation in spring-water calcium concentrations results from a seasonal variation in the solution of limestone. This seasonal cycle lags five weeks behind the cycle in spring-water P(,CO(,2)), and suggests a minimum transit time for percolation recharge of about five weeks.;The mountain-runoff stream is fed by a shallow aquifer in the colluvium on the mountain slope, and by deeper aquifers in the mountain-top hydrogeologic environment. The average residence time of water in the colluvium is 9 1/2 weeks, with 5 1/2% of the ground-water volume replaced each week. About 26% of the base flow of the stream is derived from the shallow colluvium. On the basis of a hydrologic budget for an 18 month period, 60% of the discharge of the conduit-fed spring is derived from sinkhole recharge. The remaining 40% is derived from percolation recharge on mountain-slope areas that have no integrated surface drainage system and from the carbonate rocks at the mountain foot. The attenuation in the amplitude of oxygen-18 annual cycles between sinkhole recharge and the conduit-fed spring indicates a 50/50 split between sinkhole and percolation recharge contributing to the base flow of the conduit-fed spring. Detailed study of a snowmelt-induced hydrograph peak in the diffuse-fed spring and a rainfall-induced peak in the hydrograph of the conduit-fed spring revealed that little precipitation runoff contributed to the peaks. The storm hydrograph peak in the conduit-fed spring was comprised almost entirely of water that was in the conduit before the storm began. During snowmelt, the discharge of the diffuse-fed spring increased 11% above base-flow levels, but the maximum determined contribution from melting snow was only 4.4%.
机译:这项研究的目的是(1)确定控制喀斯特地貌中泉水化学变化的过程,(2)解释洞穴环境中碳酸盐矿物的表观封闭系统溶液,以及(3)确定宾夕法尼亚州中部岩溶的泉水补给源。从山区径流,管道供水和扩散供水的泉水中收集水样。在这三个位置测量的变量是放电,pH,比电导,主要离子种类,水的δ('18)O和溶解的碳酸盐的δ('13)C。山地径流通过稀释,蒸散和枯枝落叶的淋洗以及黄铁矿氧化产物的沉淀来控制。对于以导管喂养的春季,水化学变化受稀释,土壤带P(,CO(,2))的季节性波动,污染和山地径流的影响控制。控制弥散性春季化学变化的过程是在暴风雨期间从土壤中浸出盐分,碳酸盐矿物溶液和蒸散作用。排放是所有三个位置上水化学最重要的控制。这是由于将具有不同化学成分的水以取决于流量的比例混合而成。季节变化主要与蒸散量直接相关,或者直接通过盐浓度的变化,或者间接地通过排放水的季节性变化间接地进行。导管饲泉的碳同位素组成与方解石模型预测的值相似没有气相共存的溶液。这表明大多数石灰石溶液都发生在由渗滤补给作用的扩散流系统中。进入导管后,该扩散成分在导管气相中迅速与P(,CO(,2))平衡,但保留其原始的δ(13)C值。导管喂入的弹簧中钙浓度变化的百分之六十七可归因于混合。额外的10%的泉水钙浓度变化是由石灰石溶液的季节性变化引起的。这个季节周期比泉水P(,CO(,2))的周期晚五周,建议进行渗滤补给的最短过渡时间约为五周。在山坡上的冲积层,以及在山顶水文地质环境中较深的含水层。水在洞穴中的平均停留时间为9 1/2周,每周更换地下水量的5 1/2%。流的基本流量中约有26%来自浅层集积层。根据为期18个月的水文预算,导管注入弹簧的流量的60%来自下沉孔补给。其余40%来自没有集成地表排水系统的山坡地区的渗流补给,以及山脚处的碳酸盐岩。沉降孔补给和导管补给的弹簧之间的氧气18年周期振幅的衰减表明,沉降孔补给和渗滤补给之间的50/50分配有助于导管补给的弹簧的基本流量。对散布喂养的春季融雪引起的水文峰和导管喂养的春季水文记录中的降雨引起的峰进行的详细研究表明,几乎没有降雨径流对该峰作出贡献。导管喂养的春季风暴水文图峰几乎完全由暴风雨开始之前导管中的水组成。在融雪期间,分散喂养的春季的流量比基本流量水平增加了11%,但是融雪的最大确定贡献仅为4.4%。

著录项

  • 作者

    HULL, LAURENCE CHARLES.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Geochemistry.
  • 学位 Ph.D.
  • 年度 1980
  • 页码 275 p.
  • 总页数 275
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:51:36

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号